def dump_stock(stock: Stock, stockStorage: StockStorage): main_file = stockStorage.getStoragePath("profil", "html") storage_repository = stockStorage.storage_repository dl.download(WEBSITE + "/aktien/" + stock.name, main_file, storage_repository) dl.download(f"%s/bilanz_guv/%s" % (WEBSITE, stock.name), stockStorage.getStoragePath("bilanz_guv", "html"), storage_repository) dl.download(f"%s/schaetzungen/%s" % (WEBSITE, stock.name), stockStorage.getStoragePath("schaetzungen", "html"), storage_repository) dl.download(f"%s/termine/%s" % (WEBSITE, stock.name), stockStorage.getStoragePath("termine", "html"), storage_repository) dl.download(f"%s/analysen/%s-analysen" % (WEBSITE, stock.name), stockStorage.getStoragePath("analysen", "html"), storage_repository) download_history(stockStorage)
def get_allianz_stock_storage(get_history=False, date=datetime.now()): indexGroup = IndexGroup("DE0008469008", "DAX", "DAX", "onvista") index_storage = IndexStorage("resources", indexGroup, date=date, get_history=get_history) stock = Stock("DE0008404005", "Allianz", indexGroup) return StockStorage(index_storage, stock)
def test_base_path_of_stock(self): # given: index_group = IndexGroup("isin", "index_name", "source_id", "source") stock = Stock("stock_id", "stock_name", index_group) date = datetime.strptime("2018-01-01", "%Y-%m-%d") index_storage = IndexStorage("/tests/dump", index_group, date, get_history=False) # when: stock_storage = StockStorage(index_storage, stock) base_path = stock_storage.getDatedPath() # then: self.assertEqual("/tests/dump/index_name/2018-01-01/", base_path)
def get_vw_stock_storage(get_history=False, date=datetime.now()): indexGroup = IndexGroup("DE0008469008", "DAX", "DAX", "onvista") index_storage = IndexStorage("resources", indexGroup, date=date, get_history=get_history) stock = Stock("DE0007664039", "Volkswagen-VZ", indexGroup) return StockStorage(index_storage, stock)
def download_history(stock_name: str, stockStorage: StockStorage): path = stockStorage.getStoragePath("history", "html") content = stockStorage.storage_repository.load(path) if content: soup = BeautifulSoup(content, 'html.parser') selectbox = soup.find("div", {"id": "exchangesLayerHs"}) if not selectbox: return options = selectbox.findAll("a") if options is None: print("unable to find historical data for stock {}".format( stock_name)) def create_StockExchangeOpt(opt): volume = opt.find("span").get_text().strip() volume = volume.replace(" Stk.", "") volume = "0" if volume is None or volume == "" else volume volume = volume.replace(".", "") notation = opt.get('href').split("=")[1] opt.find("span").decompose() name = opt.get_text().strip() return StockExchangeOpt(option=opt, name=name, notation=notation, volume=int(volume)) def is_valid_exchange_option(opt: StockExchangeOpt, ref_index: str) -> bool: if ref_index == "TecDAX": return opt.name != "Swiss Exchange" return True ref_index = stockStorage.stock.indexGroup.name seo = seq(options) \ .map(create_StockExchangeOpt) \ .filter(lambda se: is_valid_exchange_option(se, ref_index)) \ .sorted(lambda se: se.volume, reverse=True) \ .first() if seo: print( "download history for '{}' from '{}' stock exchange (volumne: {})" .format(stock_name, seo.name, seo.volume)) download_history_by_notation(seo.notation, stockStorage) else: print("unable to find notation for stock {}".format(stock_name))
def add_historical_eps(stock: Stock, stock_storage: StockStorage): if not stock_storage.indexStorage.historicalStorage: stock.historical_eps_current_year = 0 stock.historical_eps_next_year = 0 return historical_storage = StockStorage( stock_storage.indexStorage.historicalStorage, stock) stock.historical_eps_date = historical_storage.indexStorage.date_str try: historical_storage.load() historical_stock = historical_storage.stock stock.historical_eps_current_year = historical_stock.eps_current_year stock.historical_eps_next_year = historical_stock.eps_next_year except FileNotFoundError: stock.historical_eps_current_year = 0 stock.historical_eps_next_year = 0
def dump_stock(event: dict, context): data = decode_pubsub_data(event) logging.info("data: {}".format(data)) source = data["source"] index_group = new_index_group(data["index_group"]) stock = new_stock(data["stock"], index_group) date = date_or_now(data) logging.info("source: {}".format(source)) logging.info("index_group: {}".format(index_group)) logging.info("stock: {}".format(stock)) logging.info("date: {}".format(date)) index_storage = IndexStorage(DUMP_FOLDER, index_group, date=date, storage_repository=S3Repository(BUCKET_NAME)) stock_storage = StockStorage(index_storage, stock, storage_repository=S3Repository(BUCKET_NAME)) downloader = DownloaderFactory.create(source) downloader.dump_stock(stock, stock_storage) scraper = ScraperFactory.create(source) scraper.scrap(stock, stock_storage) stock_storage.store() stock_storage.compress()
def write_appointments(appointments, stock_storage: StockStorage): if len(appointments) > 0: path = stock_storage.indexStorage.getAppointmentsPath() csv_file = path + stock_storage.getFilename("company-and-appointments", "csv") content = "Date;Topic;\n" for key, value in appointments.items(): content += "{};{};\n".format(key, value) stock_storage.storage_repository.store(csv_file, content)
def dump_stock(stock: Stock, stock_storage: StockStorage): main_file = stock_storage.getStoragePath("profil", "html") storage_repository = stock_storage.storage_repository dl.download(WEBSITE + "/aktien/" + stock.stock_id, main_file, storage_repository) links = get_links(main_file, storage_repository) dl.download(WEBSITE + links["Fundamental"], stock_storage.getStoragePath("fundamental", "html"), storage_repository) dl.download(WEBSITE + links["T&S/Historie"], stock_storage.getStoragePath("history", "html"), storage_repository, retry=True) dl.download( WEBSITE + links["Profil/Termine"], stock_storage.getStoragePath("company-and-appointments", "html"), storage_repository) download_history(stock.name, stock_storage) download_ratings(stock.stock_id, stock_storage)
def write_stock_report(stock: Stock, stock_storage: StockStorage, rating: Rating): template = Template(filename="libs/templates/stock-rating.html") stock_before, stock_after = find_stock_next_to(stock, stock.indexGroup.stocks) report = template.render(stock=stock, rating=rating, source=stock_storage.indexStorage.source, report_date=stock_storage.indexStorage.date_str, stock_before=stock_before, stock_after=stock_after) stock_storage.storage_repository.store( stock_storage.getStoragePath("", "html"), report)
def read_existing_appointments(stock_storage: StockStorage): appointments = {} path = stock_storage.indexStorage.getAppointmentsPath() csv_file = path + stock_storage.getFilename("company-and-appointments", "csv") content = stock_storage.storage_repository.load(csv_file) if content: rows = csv.DictReader(content.splitlines(), delimiter=';') for row in rows: date = row["Date"].strip() topic = row["Topic"].strip() appointments[date] = topic return appointments
def scrap_ratings(stock, stock_storage: StockStorage): filename = stock_storage.getStoragePath("ratings", "html") ratings = {"kaufen": 0, "halten": 0, "verkaufen": 0} content = stock_storage.storage_repository.load(filename) if content: soup = BeautifulSoup(content, 'html.parser') for row in soup.findAll("tr"): columns = row.findAll("td") type = columns[0].get_text().strip() count = columns[1] count.div.decompose() ratings[type] = int(count.get_text().strip()) stock.ratings = AnalystRatings(ratings["kaufen"], ratings["halten"], ratings["verkaufen"]) return stock
def download_ratings(stock_id: str, stockStorage: StockStorage): url = "https://www.onvista.de/news/boxes/aggregated-analyses" \ "?timespan=-1+month&assetType=Stock&assetId=" + stock_id + "&showAllAnalyzesLink=0" dl.download(url, stockStorage.getStoragePath("ratings", "html"), stockStorage.storage_repository)
traceback.print_exc() queue.task_done() workers = 10 stock_queue = Queue() for i in range(workers): worker = Thread(target=thread_body, args=(stock_queue, )) worker.setDaemon(True) worker.start() for stock in indexGroup.stocks: stock_storage = StockStorage(index_storage, stock) stock_queue.put((stock, stock_storage)) print('## Start downloading') stock_queue.join() print('## Finished downloading') print('## Start reporting') RatingEntity = namedtuple('RatingEntity', 'stock, rating') rating_entities = [] for stock in indexGroup.stocks: stock_storage = StockStorage(index_storage, stock) try: stock_storage.load()
def scrap(stock: Stock, stock_storage: StockStorage, util: OnVistaDateUtil = OnVistaDateUtil()): with open(stock_storage.getStoragePath("profil", "html"), mode="r") as f: soup = BeautifulSoup(f, 'html.parser') currencies = scrap_currencies(soup) price = scrap_price(soup) fundamentals = scrap_fundamentals(soup) company_details = scrap_company_details(soup) with open(stock_storage.getStoragePath("bilanz_guv", "html"), mode="r") as f: soup = BeautifulSoup(f, 'html.parser') bilanz_guv = scrap_bilanz_guv(soup) with open(stock_storage.getStoragePath("schaetzungen", "html"), mode="r") as f: soup = BeautifulSoup(f, 'html.parser') schaetzung = scrap_schaetzung(soup) with open(stock_storage.getStoragePath("analysen", "html"), mode="r") as f: soup = BeautifulSoup(f, 'html.parser') stock.ratings = scrap_analysen(soup) last_year = util.get_last_year() current_year = util.get_current_year(estimated=False) next_year = util.get_next_year(estimated=False) stock.price = asFloat(price) stock.field = company_details["Branchen"] GuV = findIn(bilanz_guv, "GuV") gewinn = asFloat(GuV["Ergebnis nach Steuer"][last_year]) ebit = asFloat(GuV["Ergebnis vor Steuern"][last_year]) erloes = asFloat(GuV["Umsatzerlöse"][last_year]) bilanz = findIn(bilanz_guv, "Bilanz") eigenkapital = asFloat(bilanz["Eigenkapital"][last_year]) stock.roi = gewinn / eigenkapital * 100 stock.ebit_margin = ebit / erloes * 100 unternehmenskennzahlen = findIn(bilanz_guv, "Unternehmenskennzahlen") stock.equity_ratio = asFloat(unternehmenskennzahlen["Eigenkapitalquote in %"][last_year]) stock.per = asFloat(schaetzung["KGV"][current_year]) hist_pers = unternehmenskennzahlen["KGV (Jahresendkurs)"] per_5_years = stock.per number_of_year = 1 for year in list(hist_pers.keys())[-4:]: if hist_pers[year] != "-": per_5_years += asFloat(hist_pers[year]) number_of_year += 1 stock.per_5_years = (per_5_years / number_of_year) eps_row_name = "Ergebnis/Aktie (reported)" if ("Ergebnis/Aktie (reported)" in schaetzung) else "Ergebnis/Aktie" stock.eps_current_year = asFloat(schaetzung[eps_row_name][current_year]) stock.eps_next_year = asFloat(schaetzung[eps_row_name][next_year]) stock.per_fallback = stock.price / stock.eps_current_year if stock.eps_current_year != 0 else 0 stock.market_capitalization = asFloat(fundamentals["Marktkapitalisierung in Mrd. EUR"]) * 1000000000 stock_price_today = 0 stock_price_6month = 0 stock_price_1year = 0 stock.history = History(stock_price_today, stock_price_6month, stock_price_1year) stock.monthClosings = MonthClosings() stock.historical_eps_current_year = 0 stock.historical_eps_date = 0 stock.historical_eps_next_year = 0 stock.reaction_to_quarterly_numbers = ReactionToQuarterlyNumbers(0, 0, 0, 0, "") return stock
def scrap(stock: Stock, stock_storage: StockStorage, util: OnVistaDateUtil = OnVistaDateUtil()): path = stock_storage.getStoragePath("fundamental", "html") content = stock_storage.storage_repository.load(path) if content: soup = BeautifulSoup(content, 'html.parser') stock.symbol = scrap_symbol(soup) fundamentals = scrap_fundamentals(soup) last_year_est = util.get_last_year(estimated=True) last_cross_year_est = util.get_last_cross_year(estimated=True) fallback_to_last_year_values = last_year_est in fundamentals[ "Rentabilität"][ "Eigenkapitalrendite"] or last_cross_year_est in fundamentals[ "Rentabilität"]["Eigenkapitalrendite"] if fallback_to_last_year_values: last_year = util.get_last_year(min_years=2) last_cross_year = util.get_last_cross_year(min_years=2) current_year = util.get_last_year(estimated=True) current_cross_year = util.get_last_cross_year() current_cross_year_est = util.get_last_cross_year(estimated=True) next_year = util.get_current_year() next_cross_year = util.get_current_cross_year() else: last_year = util.get_last_year() last_cross_year = util.get_last_cross_year() current_year = util.get_current_year() current_cross_year = util.get_current_cross_year(estimated=False) current_cross_year_est = util.get_current_cross_year() next_year = util.get_next_year() next_cross_year = util.get_next_cross_year() stock.price = asFloat( soup.find("ul", { "class": "KURSDATEN" }).find("li").find("span").get_text().strip()) stock.roi = asFloat( get_for_year(fundamentals["Rentabilität"]["Eigenkapitalrendite"], [last_year, last_cross_year])) stock.ebit_margin = asFloat( get_for_year(fundamentals["Rentabilität"]["EBIT-Marge"], [last_year, last_cross_year])) stock.equity_ratio = asFloat( get_for_year(fundamentals["Bilanz"]["Eigenkapitalquote"], [last_year, last_cross_year])) stock.per_5_years = calc_per_5_years( fundamentals, [current_year, current_cross_year_est, current_cross_year]) stock.per = asFloat( get_for_year( fundamentals["Gewinn"]["KGV"], [current_year, current_cross_year_est, current_cross_year])) date = stock_storage.indexStorage.date if sameDay(date, datetime.now()): date = date - relativedelta(days=1) stock_price_today = get_latest_price(stock_storage, date) stock_price_6month = get_historical_price( stock_storage, (date - relativedelta(months=6))) stock_price_1year = get_historical_price( stock_storage, (date - relativedelta(months=12))) stock.history = History(stock_price_today, stock_price_6month, stock_price_1year) stock.monthClosings = get_month_closings(stock_storage) stock.eps_current_year = asFloat( get_for_year( fundamentals["Gewinn"]["Gewinn pro Aktie in EUR"], [current_year, current_cross_year_est, current_cross_year])) stock.per_fallback = stock.price / stock.eps_current_year if stock.eps_current_year != 0 else 0 stock.eps_next_year = asFloat( get_for_year(fundamentals["Gewinn"]["Gewinn pro Aktie in EUR"], [next_year, next_cross_year])) stock.market_capitalization = get_market_capitalization( fundamentals, last_year, last_cross_year) stock = scrap_ratings(stock, stock_storage) add_historical_eps(stock, stock_storage) add_reaction_to_quarterly_numbers(stock, stock_storage) return stock