def _train(train_raw): models = {} all_docs = {} for topic in train_raw: x_train = [] y_train = [] for inst in train_raw[topic]: feature_vector = [ ext.extract(inst[0], inst[1]) for ext in self.extractors ] x_train.append(feature_vector) y_train.append(inst[2]) svm = Supervised(self.args, self.opts) with open( constants.get_path()['tmp'] + '/ltr-features-%s' % topic, 'wb') as mf: json.dump({ 'x_train': x_train, 'y_train': y_train }, mf, indent=2) svm.train(x_train, y_train) models[topic.lower()] = svm all_docs[topic] = [inst[1] for inst in train_raw[topic]] return models, all_docs
def _train(train_raw): models = {} all_docs = {} for topic in train_raw: x_train = [] y_train = [] for inst in train_raw[topic]: feature_vector = [ ext.extract(inst[0], inst[1]) for ext in self.extractors ] x_train.append(feature_vector) y_train.append(inst[2]) svm = Supervised(self.args, self.opts) if not os.path.exists(constants.get_path()['tmp'] + '/ltr-features-all'): with open(constants.get_path()['tmp'] + '/ltr-features-all', 'wb') as mf: json.dump({ 'x_train': x_train, 'y_train': y_train }, mf, indent=2) svm.train(x_train, y_train) all_docs = [ inst[1] for topc in train_raw for inst in train_raw[topc] ] return svm, all_docs
def _train(train_raw): models = {} all_docs = {} for topic in train_raw: x_train = [] y_train = [] for inst in train_raw[topic]: feature_vector = [ ext.extract(inst[0], inst[1]) for ext in self.extractors] x_train.append(feature_vector) y_train.append(inst[2]) svm = Supervised(self.args, self.opts) with open(constants.get_path()['tmp'] + '/ltr-features-%s' % topic, 'wb') as mf: json.dump( {'x_train': x_train, 'y_train': y_train}, mf, indent=2) svm.train(x_train, y_train) models[topic.lower()] = svm all_docs[topic] = [inst[1] for inst in train_raw[topic]] return models, all_docs
def _train(train_raw): models = {} all_docs = {} for topic in train_raw: x_train = [] y_train = [] for inst in train_raw[topic]: feature_vector = [ ext.extract(inst[0], inst[1]) for ext in self.extractors] x_train.append(feature_vector) y_train.append(inst[2]) svm = Supervised(self.args, self.opts) if not os.path.exists(constants.get_path()['tmp'] + '/ltr-features-all'): with open(constants.get_path()['tmp'] + '/ltr-features-all', 'wb') as mf: json.dump( {'x_train': x_train, 'y_train': y_train}, mf, indent=2) svm.train(x_train, y_train) all_docs = [inst[1] for topc in train_raw for inst in train_raw[topc]] return svm, all_docs