##--------------------------------------------------## ## Other options exist_model = "" # Use it in transfer learning. ##--------------------------------------------------## ## Main params traindata = "data/mfcc_23_pitch/voxceleb1_train_aug" egs_dir = "exp/egs/mfcc_23_pitch_voxceleb1_train_aug" + "_" + sample_type model_blueprint = "subtools/pytorch/model/snowdar-xvector.py" model_dir = "exp/standard_voxceleb1" ##--------------------------------------------------## ## ######################################################### START ######################################################### ## #### Set seed utils.set_all_seed(1024) ## #### Set sleep time for a rest # Use it to run a launcher with a countdown function when there are no extra GPU memory # but you really want to go to bed and know when the GPU memory will be free. if args.sleep > 0: time.sleep(args.sleep) ## #### Init environment # It is used for multi-gpu training if used (number of gpu-id > 1). # And it will do nothing for single-GPU training. utils.init_multi_gpu_training(args.gpu_id, args.multi_gpu_solution, args.port) ## #### Auto-config params # If multi-GPU used, it will auto-scale learning rate by multiplying number of processes. optimizer_params["learn_rate"] = utils.auto_scale_lr( optimizer_params["learn_rate"])
suffix = "params" # Used in saved model file. ##--------------------------------------------------## ## Other options exist_model = "" # Use it in transfer learning. ##--------------------------------------------------## ## Main params traindata = "data/mfcc_23_pitch/voxceleb1_train_aug" egs_dir = "exp/egs/mfcc_23_pitch_voxceleb1_train_aug" + "_" + sample_type + "_max" model_blueprint = "subtools/pytorch/model/xvector.py" model_dir = "exp/standard_xv_baseline_warmR_voxceleb1" ##--------------------------------------------------## ## #### Set seed utils.set_all_seed( 1024 ) # Note that, in different machine, random still will be different enven with the same seed, # so, you could always get little different results by this launcher comparing to mine. #### Preprocess if stage <= 2 and endstage >= 0: # Here only give limited options because it is not convenient. # Suggest to pre-execute this shell script to make it freedom and then continue to run this launcher. kaldi_common.execute_command( "bash subtools/pytorch/pipeline/preprocess_to_egs.sh " "--stage {stage} --endstage {endstage} --valid-split-type {valid_split_type} " "--nj {nj} --cmn {cmn} --limit-utts {limit_utts} --min-chunk {chunk_size} --overlap {overlap} " "--sample-type {sample_type} --chunk-num {chunk_num} --scale {scale} --force-clear {force_clear} " "--valid-num-utts {valid_utts} --valid-chunk-num {valid_chunk_num_every_utt} --compress {compress} " "{traindata} {egs_dir}".format( stage=stage,