def read_seg(seg_dir): seg = Image.open(seg_dir) h, w = seg.size if (len(args.scale_size) == 1): if (h > w): tw = args.scale_size[0] th = (tw * h) / w th = int((th // 64) * 64) else: th = args.scale_size[0] tw = (th * w) / h tw = int((tw // 64) * 64) else: tw = args.scale_size[1] th = args.scale_size[0] seg = np.asarray(seg).reshape((w, h, 1)) seg = np.squeeze(seg) seg = scipy.misc.imresize(seg, (tw // 8, th // 8), "nearest", mode="F") t = [] t.extend([transforms.ToTensor()]) trans = transforms.Compose(t) pair = [seg, seg] transformed = list(trans(*pair)) seg = transformed[0] return to_one_hot(seg)
def read_seg(seg_dir, scale_size): seg = Image.open(seg_dir) # seg_im = np.array(seg.getpalette()).reshape((-1,3)) # seg_cv = cv2.imread(seg_dir) h,w = seg.size if(len(scale_size) == 1): if(h > w): tw = scale_size[0] th = (tw * h) / w th = int((th // 64) * 64) else: th = scale_size[0] tw = (th * w) / h tw = int((tw // 64) * 64) else: tw = scale_size[1] th = scale_size[0] seg = np.asarray(seg).reshape((w,h,1)) seg_ori = np.squeeze(seg) small_seg = scipy.misc.imresize(seg_ori, (tw//8, th//8),"nearest",mode="F") large_seg = scipy.misc.imresize(seg_ori, (tw,th),"nearest",mode="F") t = [] t.extend([transforms.ToTensor()]) trans = transforms.Compose(t) pair = [large_seg, small_seg] transformed = list(trans(*pair)) large_seg = transformed[0] small_seg = transformed[1] return to_one_hot(large_seg), to_one_hot(small_seg), seg_ori
def create_transforms(): normalize = transforms.Normalize(mean=(128, 128, 128), std=(128, 128, 128)) t = [] t.extend([transforms.ToTensor(), normalize]) return transforms.Compose(t)