Example #1
0
    def postprocess_detctions(self, rpn_bbox_pred, rpn_cls_prob, anchors):

        def filter_detections(boxes, scores, is_training):

            if is_training:
                indices = tf.reshape(tf.where(tf.greater(scores, self.cfgs.VIS_SCORE)), [-1, ])
            else:
                indices = tf.reshape(tf.where(tf.greater(scores, self.cfgs.FILTERED_SCORE)), [-1, ])

            if self.cfgs.NMS:
                filtered_boxes = tf.gather(boxes, indices)
                filtered_scores = tf.gather(scores, indices)

                filtered_boxes = tf.py_func(func=backward_convert,
                                            inp=[filtered_boxes, False],
                                            Tout=[tf.float32])
                filtered_boxes = tf.reshape(filtered_boxes, [-1, 5])

                nms_indices = nms_rotate.nms_rotate(decode_boxes=filtered_boxes,
                                                    scores=tf.reshape(filtered_scores, [-1, ]),
                                                    iou_threshold=self.cfgs.NMS_IOU_THRESHOLD,
                                                    max_output_size=100 if is_training else 1000,
                                                    use_gpu=True)

                # filter indices based on NMS
                indices = tf.gather(indices, nms_indices)

            # add indices to list of all indices
            # return indices
            return indices

        if self.cfgs.METHOD == 'H':
            x_c = (anchors[:, 2] + anchors[:, 0]) / 2
            y_c = (anchors[:, 3] + anchors[:, 1]) / 2
            w = anchors[:, 2] - anchors[:, 0] + 1
            h = anchors[:, 3] - anchors[:, 1] + 1
            anchors = tf.transpose(tf.stack([x_c, y_c, w, h]))

        boxes_pred = bbox_transform.qbbox_transform_inv(boxes=anchors, deltas=rpn_bbox_pred)

        return_boxes_pred = []
        return_scores = []
        return_labels = []
        for j in range(0, self.cfgs.CLASS_NUM):
            indices = filter_detections(boxes_pred, rpn_cls_prob[:, j], self.is_training)
            tmp_boxes_pred = tf.reshape(tf.gather(boxes_pred, indices), [-1, 8])
            tmp_scores = tf.reshape(tf.gather(rpn_cls_prob[:, j], indices), [-1, ])

            return_boxes_pred.append(tmp_boxes_pred)
            return_scores.append(tmp_scores)
            return_labels.append(tf.ones_like(tmp_scores) * (j + 1))

        return_boxes_pred = tf.concat(return_boxes_pred, axis=0)
        return_scores = tf.concat(return_scores, axis=0)
        return_labels = tf.concat(return_labels, axis=0)

        return return_boxes_pred, return_scores, return_labels
Example #2
0
    def modulated_rotation_8p_loss(self,
                                   targets,
                                   preds,
                                   anchor_state,
                                   anchors,
                                   sigma=3.0):
        targets = tf.reshape(targets[:, :-1], [-1, 8])

        sigma_squared = sigma**2
        indices = tf.reshape(tf.where(tf.equal(anchor_state, 1)), [
            -1,
        ])
        preds = tf.gather(preds, indices)
        targets = tf.gather(targets, indices)
        anchors = tf.gather(anchors, indices)

        # change from delta to abslote data
        if self.cfgs.METHOD == 'H':
            x_c = (anchors[:, 2] + anchors[:, 0]) / 2
            y_c = (anchors[:, 3] + anchors[:, 1]) / 2
            w = anchors[:, 2] - anchors[:, 0] + 1
            h = anchors[:, 3] - anchors[:, 1] + 1
            # theta = -90 * tf.ones_like(x_c)
            anchors = tf.transpose(tf.stack([x_c, y_c, w, h]))

        preds = bbox_transform.qbbox_transform_inv(boxes=anchors, deltas=preds)
        # targets=bbox_transform.rbbox_transform_inv_1(boxes=anchors, deltas=targets)
        targets = tf.py_func(func=re_order, inp=[targets], Tout=[tf.float32])
        targets = tf.reshape(targets, [-1, 8])

        # prepare for normalization
        normalizer = tf.stop_gradient(tf.where(tf.equal(anchor_state, 1)))
        normalizer = tf.cast(tf.shape(normalizer)[0], tf.float32)
        normalizer = tf.maximum(1.0, normalizer)

        # loss1
        loss1_1 = (preds[:, 0] - targets[:, 0]) / anchors[:, 2]
        loss1_2 = (preds[:, 1] - targets[:, 1]) / anchors[:, 3]
        loss1_3 = (preds[:, 2] - targets[:, 2]) / anchors[:, 2]
        loss1_4 = (preds[:, 3] - targets[:, 3]) / anchors[:, 3]
        loss1_5 = (preds[:, 4] - targets[:, 4]) / anchors[:, 2]
        loss1_6 = (preds[:, 5] - targets[:, 5]) / anchors[:, 3]
        loss1_7 = (preds[:, 6] - targets[:, 6]) / anchors[:, 2]
        loss1_8 = (preds[:, 7] - targets[:, 7]) / anchors[:, 3]
        box_diff_1 = tf.stack([
            loss1_1, loss1_2, loss1_3, loss1_4, loss1_5, loss1_6, loss1_7,
            loss1_8
        ], 1)
        box_diff_1 = tf.abs(box_diff_1)
        loss_1 = tf.where(tf.less(box_diff_1, 1.0 / sigma_squared),
                          0.5 * sigma_squared * tf.pow(box_diff_1, 2),
                          box_diff_1 - 0.5 / sigma_squared)
        loss_1 = tf.reduce_sum(loss_1, 1)

        # loss2
        loss2_1 = (preds[:, 0] - targets[:, 2]) / anchors[:, 2]
        loss2_2 = (preds[:, 1] - targets[:, 3]) / anchors[:, 3]
        loss2_3 = (preds[:, 2] - targets[:, 4]) / anchors[:, 2]
        loss2_4 = (preds[:, 3] - targets[:, 5]) / anchors[:, 3]
        loss2_5 = (preds[:, 4] - targets[:, 6]) / anchors[:, 2]
        loss2_6 = (preds[:, 5] - targets[:, 7]) / anchors[:, 3]
        loss2_7 = (preds[:, 6] - targets[:, 0]) / anchors[:, 2]
        loss2_8 = (preds[:, 7] - targets[:, 1]) / anchors[:, 3]
        box_diff_2 = tf.stack([
            loss2_1, loss2_2, loss2_3, loss2_4, loss2_5, loss2_6, loss2_7,
            loss2_8
        ], 1)
        box_diff_2 = tf.abs(box_diff_2)
        loss_2 = tf.where(tf.less(box_diff_2, 1.0 / sigma_squared),
                          0.5 * sigma_squared * tf.pow(box_diff_2, 2),
                          box_diff_2 - 0.5 / sigma_squared)
        loss_2 = tf.reduce_sum(loss_2, 1)

        # loss3
        loss3_1 = (preds[:, 0] - targets[:, 6]) / anchors[:, 2]
        loss3_2 = (preds[:, 1] - targets[:, 7]) / anchors[:, 3]
        loss3_3 = (preds[:, 2] - targets[:, 0]) / anchors[:, 2]
        loss3_4 = (preds[:, 3] - targets[:, 1]) / anchors[:, 3]
        loss3_5 = (preds[:, 4] - targets[:, 2]) / anchors[:, 2]
        loss3_6 = (preds[:, 5] - targets[:, 3]) / anchors[:, 3]
        loss3_7 = (preds[:, 6] - targets[:, 4]) / anchors[:, 2]
        loss3_8 = (preds[:, 7] - targets[:, 5]) / anchors[:, 3]
        box_diff_3 = tf.stack([
            loss3_1, loss3_2, loss3_3, loss3_4, loss3_5, loss3_6, loss3_7,
            loss3_8
        ], 1)
        box_diff_3 = tf.abs(box_diff_3)
        loss_3 = tf.where(tf.less(box_diff_3, 1.0 / sigma_squared),
                          0.5 * sigma_squared * tf.pow(box_diff_3, 2),
                          box_diff_3 - 0.5 / sigma_squared)
        loss_3 = tf.reduce_sum(loss_3, 1)

        loss = tf.minimum(tf.minimum(loss_1, loss_2), loss_3)
        loss = tf.reduce_sum(loss) / normalizer

        return loss