def test_unnormalize(): df = load_larynx() m = df.mean(0) s = df.std(0) ndf = utils.normalize(df) npt.assert_almost_equal(df.values, utils.unnormalize(ndf, m, s).values)
def test_p_value_against_Survival_Analysis_by_John_Klein_and_Melvin_Moeschberger(self): # see table 8.1 in Survival Analysis by John P. Klein and Melvin L. Moeschberger, Second Edition df = load_larynx() cf = CoxPHFitter() cf.fit(df, duration_col='time', event_col='death') # p-values actual_p = cf._compute_p_values() expected_p = np.array([0.1847, 0.7644, 0.0730, 0.00]) npt.assert_array_almost_equal(actual_p, expected_p, decimal=2)
def test_se_against_Survival_Analysis_by_John_Klein_and_Melvin_Moeschberger(self): # see table 8.1 in Survival Analysis by John P. Klein and Melvin L. Moeschberger, Second Edition df = load_larynx() cf = CoxPHFitter() cf.fit(df, duration_col='time', event_col='death') # standard errors actual_se = cf._compute_standard_errors().values expected_se = np.array([[0.0143, 0.4623, 0.3561, 0.4222]]) npt.assert_array_almost_equal(actual_se, expected_se, decimal=2)
def test_se_against_Survival_Analysis_by_John_Klein_and_Melvin_Moeschberger(self): # see table 8.1 in Survival Analysis by John P. Klein and Melvin L. Moeschberger, Second Edition df = load_larynx() cf = CoxPHFitter(normalize=False) cf.fit(df, duration_col='time', event_col='death') # standard errors actual_se = cf._compute_standard_errors().values expected_se = np.array([[0.0143, 0.4623, 0.3561, 0.4222]]) npt.assert_array_almost_equal(actual_se, expected_se, decimal=2)
def test_normalize(): df = load_larynx() n, d = df.shape npt.assert_almost_equal(utils.normalize(df).mean(0).values, np.zeros(d)) npt.assert_almost_equal(utils.normalize(df).std(0).values, np.ones(d))