Example #1
0
    def test_parametric_plotting_with_show_censors(self, block):
        n = 200
        T = (np.sqrt(50) * np.random.exponential(1, size=n)) ** 2
        E = T < 100
        T = np.minimum(T, 100)

        wf = WeibullFitter().fit(T, E)
        wf.plot_density(show_censors=True)
        wf.plot_cumulative_density(show_censors=True)

        self.plt.title("test_parametric_plotting_with_show_censors:cumulative_density")
        self.plt.show(block=block)

        wf.plot_survival_function(show_censors=True)
        self.plt.title("test_parametric_plotting_with_show_censors:survival_function")
        self.plt.show(block=block)

        wf.plot_cumulative_hazard(show_censors=True)
        self.plt.title("test_parametric_plotting_with_show_censors:cumulative_hazard")
        self.plt.show(block=block)

        wf.plot_density(show_censors=True)
        self.plt.title("test_parametric_plotting_with_show_censors:density")
        self.plt.show(block=block)
        return
Example #2
0
    def test_logx_plotting(self, block):
        waltons = load_waltons()
        kmf = KaplanMeierFitter().fit(np.exp(waltons["T"]), waltons["E"], timeline=np.logspace(0, 40))
        ax = kmf.plot(logx=True)

        wf = WeibullFitter().fit(np.exp(waltons["T"]), waltons["E"], timeline=np.logspace(0, 40))
        wf.plot_survival_function(logx=True, ax=ax)

        self.plt.title("test_logx_plotting")
        self.plt.show(block=block)
Example #3
0
    def test_parametric_plotting_with_show_censors(self, block):
        n = 200
        T = 50 * np.random.exponential(1, size=(n, 1)) ** 2
        E = np.random.rand(n) > 0.2

        wf = WeibullFitter().fit(T, E, timeline=np.linspace(0, 5, 1000))
        wf.plot_cumulative_density(show_censors=True)
        self.plt.title("test_parametric_plotting_with_show_censors:cumulative_density")
        self.plt.show(block=block)

        wf.plot_survival_function(show_censors=True)
        self.plt.title("test_parametric_plotting_with_show_censors:survival_function")
        self.plt.show(block=block)

        wf.plot_cumulative_hazard(show_censors=True)
        self.plt.title("test_parametric_plotting_with_show_censors:cumulative_hazard")
        self.plt.show(block=block)
        return
import pandas as pd
data = pd.read_csv('Dataset/telco_customer.csv')
data['tenure'] = pd.to_numeric(data['tenure'])
data = data[data['tenure'] > 0]

# Replace yes and No in the Churn column to 1 and 0. 1 for the event and 0 for the censured data.
data['Churn'] = data['Churn'].apply(lambda x: 1 if x == 'Yes' else 0)
fig, axes = plt.subplots(2, 2, figsize=(16, 12))

T = data['tenure']
E = data['Churn']

wbf = WeibullFitter().fit(T, E, label='WeibullFitter')
ef = ExponentialFitter().fit(T, E, label='ExponentialFitter')
lnf = LogNormalFitter().fit(T, E, label='LogNormalFitter')
llf = LogLogisticFitter().fit(T, E, label='LogLogisticFitter')

wbf.plot_survival_function(ax=axes[0][0])
ef.plot_survival_function(ax=axes[0][1])
lnf.plot_survival_function(ax=axes[1][0])
llf.plot_survival_function(ax=axes[1][1])

plt.suptitle(
    'Implementation of  Paramteric Models to create survival functions on the teleco dataset'
)

fig.text(0.5, 0.04, 'Timeline', ha='center')
fig.text(0.04, 0.5, 'Probability', va='center', rotation='vertical')
plt.savefig('Images/SurvivalFunctions.jpeg')
plt.show()
Example #5
0
CI = ((df['CITY'] == 1), "city")
MM = ((df['MONDAY'] == 1), "Monday")

BROKEN = ((df['DEAD'] > 0), "all broken down")
OKAY = ((df['DEAD'] == 0), "all okay")  # not used obviously

fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 4))
ax.hist(df["KM"], bins=100, rwidth=0.8)

fig0, ax0 = plt.subplots(nrows=1, ncols=1, figsize=(8, 4))

T = df['KM']
E = df['DEAD']  # all broken trucks
wf = WeibullFitter().fit(T, E)
wf.print_summary()
wf.plot_survival_function(ax=ax0, ci_show=False, label="Full population")

kmf = KaplanMeierFitter()
kmf.fit(T, event_observed=E)

kmf.survival_function_
kmf.cumulative_density_

kmf.plot_survival_function(ax=ax0, ci_show=False)
#kmf.plot_cumulative_density()

fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 4))
for X, x in [BROKEN, EN, MO, CI, MM]:
    T = df['KM'][X]
    E = df['DEAD'][X]