Example #1
0
def LF_experiment(angle, reps=1, ntrees=10, acorn=None):
    
    errors = np.zeros(2)
    
    for rep in range(reps):
        print("Starting Rep {} of Angle {}".format(rep, angle))
        X_base_train, y_base_train = generate_gaussian_parity(n = 100, angle_params = 0)
        X_base_test, y_base_test = generate_gaussian_parity(n = 10000, angle_params = 0)
        X_rotated_train, y_rotated_train = generate_gaussian_parity(n = 100, angle_params = angle)
        
    
        lifelong_forest = LifeLongDNN(model = "uf", parallel = True)
        lifelong_forest.new_forest(X_base_train, y_base_train, n_estimators=ntrees)
        lifelong_forest.new_forest(X_rotated_train, y_rotated_train, n_estimators=ntrees)

        all_predictions_test=lifelong_forest.predict(X_base_test, representation='all', decider=0)
        base_predictions_test=lifelong_forest.predict(X_base_test, representation=0, decider=0)

        errors[1] = errors[1]+(1 - np.mean(all_predictions_test == y_base_test))
        errors[0] = errors[0]+(1 - np.mean(base_predictions_test == y_base_test))

    
    errors = errors/reps
    print("Errors For Angle {}: {}".format(angle, errors))
    with open('results/angle_'+str(angle)+'.pickle', 'wb') as f:
        pickle.dump(errors, f, protocol = 2)
Example #2
0
def exp(n_sample, n_test, angle_params, n_trees, reps, acorn=None):

    if acorn != None:
        np.random.seed(acorn)

    error = np.zeros(reps, dtype=float)

    for i in range(reps):
        train, label = generate_gaussian_parity(n_sample,
                                                cov_scale=0.1,
                                                angle_params=angle_params)
        test, test_label = generate_gaussian_parity(n_test,
                                                    cov_scale=0.1,
                                                    angle_params=angle_params)

        l2f = LifeLongDNN()
        l2f.new_forest(train,
                       label,
                       n_estimators=n_trees,
                       max_samples=ceil(log2(n_sample)))

        uf_task = l2f.predict(test, representation=0, decider=0)
        error[i] = 1 - np.sum(uf_task == test_label) / n_test

    return np.mean(error, axis=0), np.std(error, ddof=1, axis=0)
Example #3
0
def LF_experiment(data_x,
                  data_y,
                  angle,
                  model,
                  granularity,
                  reps=1,
                  ntrees=29,
                  acorn=None):
    if acorn is not None:
        np.random.seed(acorn)

    errors = np.zeros(2)

    for rep in range(reps):
        print("Starting Rep {} of Angle {}".format(rep, angle))
        train_x1, train_y1, train_x2, train_y2, test_x, test_y = cross_val_data(
            data_x, data_y, total_cls=10)

        #change data angle for second task
        tmp_data = train_x2.copy()
        _tmp_ = np.zeros((32, 32, 3), dtype=int)
        total_data = tmp_data.shape[0]

        for i in range(total_data):
            tmp_ = image_aug(tmp_data[i], angle)
            tmp_data[i] = tmp_

        if model == "uf":
            train_x1 = train_x1.reshape(
                (train_x1.shape[0],
                 train_x1.shape[1] * train_x1.shape[2] * train_x1.shape[3]))
            tmp_data = tmp_data.reshape(
                (tmp_data.shape[0],
                 tmp_data.shape[1] * tmp_data.shape[2] * tmp_data.shape[3]))
            test_x = test_x.reshape(
                (test_x.shape[0],
                 test_x.shape[1] * test_x.shape[2] * test_x.shape[3]))

        with tf.device('/gpu:' + str(int(angle // granularity) % 4)):
            lifelong_forest = LifeLongDNN(
                model=model, parallel=True if model == "uf" else False)
            lifelong_forest.new_forest(train_x1, train_y1, n_estimators=ntrees)
            lifelong_forest.new_forest(tmp_data, train_y2, n_estimators=ntrees)

            llf_task1 = lifelong_forest.predict(test_x,
                                                representation='all',
                                                decider=0)
            llf_single_task = lifelong_forest.predict(test_x,
                                                      representation=0,
                                                      decider=0)

            errors[1] = errors[1] + (1 - np.mean(llf_task1 == test_y))
            errors[0] = errors[0] + (1 - np.mean(llf_single_task == test_y))

    errors = errors / reps
    print("Errors For Angle {}: {}".format(angle, errors))
    with open('rotation_results/angle_' + str(angle) + '_' + model + '.pickle',
              'wb') as f:
        pickle.dump(errors, f, protocol=2)
Example #4
0
def LF_experiment(data_x, data_y, ntrees, shift, slot, model, num_points_per_task, acorn=None):
    
    
    df = pd.DataFrame()
    shifts = []
    slots = []
    accuracies_across_tasks = []

    train_x_task0, train_y_task0, test_x_task0, test_y_task0 = cross_val_data(data_x, data_y, num_points_per_task, total_task=10, shift=shift, slot=slot)
    lifelong_forest = LifeLongDNN(model = model, parallel = True if model == "uf" else False)
    lifelong_forest.new_forest(
            train_x_task0, 
            train_y_task0, 
            max_depth=ceil(log2(num_points_per_task)), n_estimators=ntrees
            )
        
    task_0_predictions=lifelong_forest.predict(
        test_x_task0, representation='all', decider=0
        )

    shifts.append(shift)
    slots.append(slot)
    accuracies_across_tasks.append(np.mean(
        task_0_predictions == test_y_task0
        ))
    print(accuracies_across_tasks)
    
    for task_ii in range(29):
        train_x, train_y, _, _ = cross_val_data(data_x, data_y, num_points_per_task, total_task=10, shift=shift, slot=slot, task = task_ii)
        
        print("Starting Task {} For Fold {} For Slot {}".format(task_ii, shift, slot))
            

        lifelong_forest.new_forest(
            train_x, 
            train_y, 
            max_depth=ceil(log2(num_points_per_task)), n_estimators=ntrees
            )
        
        task_0_predictions=lifelong_forest.predict(
            test_x_task0, representation='all', decider=0
            )
            
        shifts.append(shift)
        slots.append(slot)
        accuracies_across_tasks.append(np.mean(
            task_0_predictions == test_y_task0
            ))
        print(accuracies_across_tasks)
            
    df['data_fold'] = shifts
    df['slot'] = slots
    df['accuracy'] = accuracies_across_tasks

    file_to_save = 'result/'+model+str(ntrees)+'_'+str(shift)+'_'+str(slot)+'.pickle'
    with open(file_to_save, 'wb') as f:
        pickle.dump(df, f)
Example #5
0
def LF_experiment(train_x,
                  train_y,
                  test_x,
                  test_y,
                  ntrees,
                  shift,
                  slot,
                  model,
                  num_points_per_task,
                  acorn=None):

    df = pd.DataFrame()
    shifts = []
    base_tasks = []
    accuracies_across_tasks = []

    lifelong_forest = LifeLongDNN(model=model,
                                  parallel=True if model == "uf" else False)
    for task_ii in range(10):
        print("Starting Task {} For Fold {}".format(task_ii, shift))
        if acorn is not None:
            np.random.seed(acorn)

        tmp = train_y[task_ii * 5000 +
                      slot * num_points_per_task:task_ii * 5000 +
                      (slot + 1) * num_points_per_task]
        if task_ii != 0:
            np.random.shuffle(tmp)
            #tmp=np.random.randint(low = 0, high = 10, size = num_points_per_task)

        lifelong_forest.new_forest(
            train_x[task_ii * 5000 +
                    slot * num_points_per_task:task_ii * 5000 +
                    (slot + 1) * num_points_per_task, :],
            tmp,
            max_depth=ceil(log2(num_points_per_task)),
            n_estimators=ntrees)

        llf_task = lifelong_forest.predict(test_x[0:1000, :],
                                           representation='all',
                                           decider=0)

        shifts.append(shift)
        base_tasks.append(task_ii + 1)
        accuracies_across_tasks.append(np.mean(llf_task == test_y[0:1000]))

    df['data_fold'] = shifts
    df['task'] = base_tasks
    df['task_1_accuracy'] = accuracies_across_tasks

    file_to_save = 'result/' + model + str(ntrees) + '_' + str(
        shift) + '_' + str(slot) + '.pickle'
    with open(file_to_save, 'wb') as f:
        pickle.dump(df, f)
Example #6
0
def LF_experiment(num_task_1_data, rep):

    l2f = LifeLongDNN(model="uf", parallel=False)

    X_train_task0, y_train_task0 = generate_gaussian_parity(n=num_task_1_data,
                                                            angle_params=0,
                                                            acorn=1)
    X_train_task1, y_train_task1 = generate_gaussian_parity(n=100,
                                                            angle_params=10,
                                                            acorn=1)
    X_test_task0, y_test_task0 = generate_gaussian_parity(n=10000,
                                                          angle_params=0,
                                                          acorn=2)

    l2f.new_forest(X_train_task0, y_train_task0, n_estimators=10)
    llf_task = l2f.predict(X_test_task0, representation=0, decider=0)
    single_task_accuracy = np.nanmean(llf_task == y_test_task0)
    single_task_error = 1 - single_task_accuracy

    l2f.new_forest(X_train_task1, y_train_task1, n_estimators=10)

    llf_task = l2f.predict(X_test_task0, representation="all", decider=0)
    double_task_accuracy = np.nanmean(llf_task == y_test_task0)
    double_task_error = 1 - double_task_accuracy

    if double_task_error == 0 or single_task_error == 0:
        te = 1
    else:
        te = (single_task_error + 1e-6) / (double_task_error + 1e-6)

    df = pd.DataFrame()
    df['te'] = [te]

    file_to_save = 'result/' + str(num_task_1_data) + '_' + str(
        rep) + '.pickle'
    with open(file_to_save, 'wb') as f:
        pickle.dump(df, f)
std_accuracy_dict = {'hybrid':[],'building':[],'recruiting':[],'UF':[]}

for ns in task_10_sample:
    estimation_sample_no = ceil(estimation_set*ns)
    validation_sample_no = ns - estimation_sample_no

    for rep in range(reps):
        print("doing {} samples for {} th rep".format(ns,rep))
        ## estimation
        l2f = LifeLongDNN(model = "uf", parallel = True)

        for task in range(9):
            indx = np.random.choice(num_points_per_task, num_points_per_forest, replace=False)
            l2f.new_forest(
            train_x_across_task[task][indx], 
            train_y_across_task[task][indx], 
            max_depth=ceil(log2(num_points_per_forest)),
            n_estimators=ntrees
            )

        task_10_train_indx = np.random.choice(num_points_per_task, ns, replace=False)

        l2f.new_forest(
            train_x_across_task[9][task_10_train_indx[:estimation_sample_no]], 
            train_y_across_task[9][task_10_train_indx[:estimation_sample_no]], 
            max_depth=ceil(log2(estimation_sample_no)),
            n_estimators=ntrees
            )

        
        ## L2F validation
        posteriors_across_trees = estimate_posteriors(
def LF_experiment(train_x, train_y, test_x, test_y, ntrees, shift, slot, num_points_per_task, acorn=None):
       
    uf_accuracies = np.zeros(10,dtype=float)
    rf_accuracies = np.zeros(10,dtype=float)
    single_task_accuracies = np.zeros(10,dtype=float)
    l2f_accuracies = np.zeros(10,dtype=float)

    for task_ii in range(10):
        single_task_learner = LifeLongDNN(model = "uf", parallel = True)

        if acorn is not None:
            np.random.seed(acorn)

        single_task_learner.new_forest(
            train_x[task_ii*5000+slot*num_points_per_task:task_ii*5000+(slot+1)*num_points_per_task,:],
            train_y[task_ii*5000+slot*num_points_per_task:task_ii*5000+(slot+1)*num_points_per_task], 
            max_depth=ceil(log2(num_points_per_task)), n_estimators=ntrees
            )
        llf_task=single_task_learner.predict(
            test_x[task_ii*1000:(task_ii+1)*1000,:], representation=0, decider=0
            )
        single_task_accuracies[task_ii] = np.mean(
                llf_task == test_y[task_ii*1000:(task_ii+1)*1000]
                )

    lifelong_forest = LifeLongDNN(model = "uf", parallel = True)
    for task_ii in range(10):
        print("Starting L2F Task {} For Fold {}".format(task_ii, shift))
        if acorn is not None:
            np.random.seed(acorn)

        lifelong_forest.new_forest(
            train_x[task_ii*5000+slot*num_points_per_task:task_ii*5000+(slot+1)*num_points_per_task,:], 
            train_y[task_ii*5000+slot*num_points_per_task:task_ii*5000+(slot+1)*num_points_per_task], 
            max_depth=ceil(log2(num_points_per_task)), n_estimators=ntrees
            )
        
        llf_task=lifelong_forest.predict(
                test_x[task_ii*1000:(task_ii+1)*1000,:], representation='all', decider=task_ii
                )
        l2f_accuracies[task_ii] = np.mean(
                llf_task == test_y[task_ii*1000:(task_ii+1)*1000]
                )

        
    for task_ii in range(10):
        print("Starting UF Task {} For Fold {}".format(task_ii, shift))
        lifelong_forest = LifeLongDNN(model = "uf", parallel = True)
        if acorn is not None:
            np.random.seed(acorn)

        if task_ii== 0:
            train_data_x = train_x[task_ii*5000+slot*num_points_per_task:task_ii*5000+(slot+1)*num_points_per_task,:]
            train_data_y = train_y[task_ii*5000+slot*num_points_per_task:task_ii*5000+(slot+1)*num_points_per_task]
        else:
            train_data_x = np.concatenate(
                (
                    train_data_x,
                    train_x[task_ii*5000+slot*num_points_per_task:task_ii*5000+(slot+1)*num_points_per_task,:]
                ),
                axis = 0
            )
            train_data_y = np.concatenate(
                (
                    train_data_y,
                    train_y[task_ii*5000+slot*num_points_per_task:task_ii*5000+(slot+1)*num_points_per_task]
                ),
                axis = 0
            )
        lifelong_forest.new_forest(
            train_data_x, 
            train_data_y, 
            max_depth=ceil(log2(num_points_per_task*(task_ii+1))), n_estimators=(task_ii+1)*ntrees
            )
        
        llf_task=lifelong_forest.predict(
                test_x[task_ii*1000:(task_ii+1)*1000,:], representation=0, decider=0
                )
        uf_accuracies[task_ii] = np.mean(
                llf_task == test_y[task_ii*1000:(task_ii+1)*1000]
                )





    for task_ii in range(10):
        print("Starting RF Task {} For Fold {}".format(task_ii, shift))
        RF = BaggingClassifier(
                DecisionTreeClassifier(
                max_depth=ceil(log2(num_points_per_task*(task_ii+1))),
                min_samples_leaf=1,
                max_features="auto"
            ),
            n_estimators=(task_ii+1)*ntrees,
            max_samples=0.63,
            n_jobs = -1
        )

        if acorn is not None:
            np.random.seed(acorn)

        if task_ii== 0:
            train_data_x = train_x[task_ii*5000+slot*num_points_per_task:task_ii*5000+(slot+1)*num_points_per_task,:]
            train_data_y = train_y[task_ii*5000+slot*num_points_per_task:task_ii*5000+(slot+1)*num_points_per_task]
        else:
            train_data_x = np.concatenate(
                (
                    train_data_x,
                    train_x[task_ii*5000+slot*num_points_per_task:task_ii*5000+(slot+1)*num_points_per_task,:]
                ),
                axis = 0
            )
            train_data_y = np.concatenate(
                (
                    train_data_y,
                    train_y[task_ii*5000+slot*num_points_per_task:task_ii*5000+(slot+1)*num_points_per_task]
                ),
                axis = 0
            )
        RF.fit(
            train_data_x, 
            train_data_y
            )
        
        llf_task=RF.predict(
            test_x[task_ii*1000:(task_ii+1)*1000,:]
            )
        rf_accuracies[task_ii] = np.mean(
            llf_task == test_y[task_ii*1000:(task_ii+1)*1000]
            )
        print(rf_accuracies[task_ii])
        
    return single_task_accuracies,uf_accuracies,rf_accuracies,l2f_accuracies
def experiment(n_xor, n_rxor, n_test, reps, n_trees, max_depth, acorn=None):
    #print(1)
    if n_xor == 0 and n_rxor == 0:
        raise ValueError('Wake up and provide samples to train!!!')

    if acorn != None:
        np.random.seed(acorn)

    errors = np.zeros((reps, 4), dtype=float)

    for i in range(reps):
        l2f = LifeLongDNN()
        uf = LifeLongDNN()
        #source data
        xor, label_xor = generate_gaussian_parity(n_xor,
                                                  cov_scale=0.1,
                                                  angle_params=0)
        test_xor, test_label_xor = generate_gaussian_parity(n_test,
                                                            cov_scale=0.1,
                                                            angle_params=0)

        #target data
        nxor, label_nxor = generate_gaussian_parity(n_rxor,
                                                    cov_scale=0.1,
                                                    angle_params=np.pi / 4)
        test_nxor, test_label_nxor = generate_gaussian_parity(
            n_test, cov_scale=0.1, angle_params=np.pi / 4)

        if n_xor == 0:
            l2f.new_forest(nxor,
                           label_nxor,
                           n_estimators=n_trees,
                           max_depth=max_depth)

            errors[i, 0] = 0.5
            errors[i, 1] = 0.5

            uf_task2 = l2f.predict(test_nxor, representation=0, decider=0)
            l2f_task2 = l2f.predict(test_nxor, representation='all', decider=0)

            errors[i, 2] = 1 - np.sum(uf_task2 == test_label_nxor) / n_test
            errors[i, 3] = 1 - np.sum(l2f_task2 == test_label_nxor) / n_test
        elif n_rxor == 0:
            l2f.new_forest(xor,
                           label_xor,
                           n_estimators=n_trees,
                           max_depth=max_depth)

            uf_task1 = l2f.predict(test_xor, representation=0, decider=0)
            l2f_task1 = l2f.predict(test_xor, representation='all', decider=0)

            errors[i, 0] = 1 - np.sum(uf_task1 == test_label_xor) / n_test
            errors[i, 1] = 1 - np.sum(l2f_task1 == test_label_xor) / n_test
            errors[i, 2] = 0.5
            errors[i, 3] = 0.5
        else:
            l2f.new_forest(xor,
                           label_xor,
                           n_estimators=n_trees,
                           max_depth=max_depth)
            l2f.new_forest(nxor,
                           label_nxor,
                           n_estimators=n_trees,
                           max_depth=max_depth)

            uf.new_forest(xor,
                          label_xor,
                          n_estimators=2 * n_trees,
                          max_depth=max_depth)
            uf.new_forest(nxor,
                          label_nxor,
                          n_estimators=2 * n_trees,
                          max_depth=max_depth)

            uf_task1 = uf.predict(test_xor, representation=0, decider=0)
            l2f_task1 = l2f.predict(test_xor, representation='all', decider=0)
            uf_task2 = uf.predict(test_nxor, representation=1, decider=1)
            l2f_task2 = l2f.predict(test_nxor, representation='all', decider=1)

            errors[i, 0] = 1 - np.sum(uf_task1 == test_label_xor) / n_test
            errors[i, 1] = 1 - np.sum(l2f_task1 == test_label_xor) / n_test
            errors[i, 2] = 1 - np.sum(uf_task2 == test_label_nxor) / n_test
            errors[i, 3] = 1 - np.sum(l2f_task2 == test_label_nxor) / n_test

    return np.mean(errors, axis=0)
def experiment(n_spiral3,
               n_spiral5,
               n_test,
               reps,
               n_trees,
               max_depth,
               acorn=None):
    #print(1)
    if n_spiral3 == 0 and n_rxor == 0:
        raise ValueError('Wake up and provide samples to train!!!')

    if acorn != None:
        np.random.seed(acorn)

    errors = np.zeros((reps, 4), dtype=float)

    for i in range(reps):
        l2f = LifeLongDNN()
        uf = LifeLongDNN()
        #source data
        spiral3, label_spiral3 = generate_spirals(n_spiral3, 2, 3, noise=2.5)
        test_spiral3, test_label_spiral3 = generate_spirals(n_test,
                                                            2,
                                                            3,
                                                            noise=2.5)

        #target data
        spiral5, label_spiral5 = generate_spirals(n_spiral5, 2, 5, noise=2.5)
        test_spiral5, test_label_spiral5 = generate_spirals(n_test,
                                                            2,
                                                            5,
                                                            noise=2.5)

        if n_spiral3 == 0:
            l2f.new_forest(spiral5,
                           label_spiral5,
                           n_estimators=n_trees,
                           max_depth=max_depth)

            errors[i, 0] = 0.5
            errors[i, 1] = 0.5

            uf_task2 = l2f.predict(test_spiral5, representation=0, decider=0)
            l2f_task2 = l2f.predict(test_spiral5,
                                    representation='all',
                                    decider=0)

            errors[i, 2] = 1 - np.sum(uf_task2 == test_label_spiral5) / n_test
            errors[i, 3] = 1 - np.sum(l2f_task2 == test_label_spiral5) / n_test
        elif n_spiral5 == 0:
            l2f.new_forest(spiral3,
                           label_spiral3,
                           n_estimators=n_trees,
                           max_depth=max_depth)

            uf_task1 = l2f.predict(test_spiral3, representation=0, decider=0)
            l2f_task1 = l2f.predict(test_spiral3,
                                    representation='all',
                                    decider=0)

            errors[i, 0] = 1 - np.sum(uf_task1 == test_label_spiral3) / n_test
            errors[i, 1] = 1 - np.sum(l2f_task1 == test_label_spiral3) / n_test
            errors[i, 2] = 0.5
            errors[i, 3] = 0.5
        else:
            l2f.new_forest(spiral3,
                           label_spiral3,
                           n_estimators=n_trees,
                           max_depth=max_depth)
            l2f.new_forest(spiral5,
                           label_spiral5,
                           n_estimators=n_trees,
                           max_depth=max_depth)

            uf.new_forest(spiral3,
                          label_spiral3,
                          n_estimators=2 * n_trees,
                          max_depth=max_depth)
            uf.new_forest(spiral5,
                          label_spiral5,
                          n_estimators=2 * n_trees,
                          max_depth=max_depth)

            uf_task1 = uf.predict(test_spiral3, representation=0, decider=0)
            l2f_task1 = l2f.predict(test_spiral3,
                                    representation='all',
                                    decider=0)
            uf_task2 = uf.predict(test_spiral5, representation=1, decider=1)
            l2f_task2 = l2f.predict(test_spiral5,
                                    representation='all',
                                    decider=1)

            errors[i, 0] = 1 - np.sum(uf_task1 == test_label_spiral3) / n_test
            errors[i, 1] = 1 - np.sum(l2f_task1 == test_label_spiral3) / n_test
            errors[i, 2] = 1 - np.sum(uf_task2 == test_label_spiral5) / n_test
            errors[i, 3] = 1 - np.sum(l2f_task2 == test_label_spiral5) / n_test

    return np.mean(errors, axis=0)
Example #11
0
def LF_experiment(train_x,
                  train_y,
                  test_x,
                  test_y,
                  ntrees,
                  shift,
                  slot,
                  model,
                  num_points_per_task,
                  acorn=None):

    df = pd.DataFrame()
    single_task_accuracies = np.zeros(10, dtype=float)
    shifts = []
    tasks = []
    base_tasks = []
    accuracies_across_tasks = []

    for task_ii in range(10):
        if model == "uf":
            single_task_learner = LifeLongDNN(model="uf", parallel=True)

            if acorn is not None:
                np.random.seed(acorn)

            single_task_learner.new_forest(
                train_x[task_ii * 5000 +
                        slot * num_points_per_task:task_ii * 5000 +
                        (slot + 1) * num_points_per_task, :],
                train_y[task_ii * 5000 +
                        slot * num_points_per_task:task_ii * 5000 +
                        (slot + 1) * num_points_per_task],
                max_depth=ceil(log2(num_points_per_task)),
                n_estimators=ntrees * (task_ii + 1))
            llf_task = single_task_learner.predict(
                test_x[task_ii * 1000:(task_ii + 1) * 1000, :],
                representation=0,
                decider=0)
            single_task_accuracies[task_ii] = np.mean(
                llf_task == test_y[task_ii * 1000:(task_ii + 1) * 1000])

    lifelong_forest = LifeLongDNN(model=model,
                                  parallel=True if model == "uf" else False)
    for task_ii in range(10):
        print("Starting Task {} For Fold {}".format(task_ii, shift))
        if acorn is not None:
            np.random.seed(acorn)

        lifelong_forest.new_forest(
            train_x[task_ii * 5000 +
                    slot * num_points_per_task:task_ii * 5000 +
                    (slot + 1) * num_points_per_task, :],
            train_y[task_ii * 5000 +
                    slot * num_points_per_task:task_ii * 5000 +
                    (slot + 1) * num_points_per_task],
            max_depth=ceil(log2(num_points_per_task)),
            n_estimators=ntrees)
        if model == "dnn":
            llf_task = lifelong_forest.predict(
                test_x[task_ii * 1000:(task_ii + 1) * 1000, :],
                representation=task_ii,
                decider=task_ii)
            single_task_accuracies[task_ii] = np.mean(
                llf_task == test_y[task_ii * 1000:(task_ii + 1) * 1000])

        for task_jj in range(task_ii + 1):
            llf_task = lifelong_forest.predict(
                test_x[task_jj * 1000:(task_jj + 1) * 1000, :],
                representation='all',
                decider=task_jj)

            shifts.append(shift)
            tasks.append(task_jj + 1)
            base_tasks.append(task_ii + 1)
            accuracies_across_tasks.append(
                np.mean(llf_task == test_y[task_jj * 1000:(task_jj + 1) *
                                           1000]))

    df['data_fold'] = shifts
    df['task'] = tasks
    df['base_task'] = base_tasks
    df['accuracy'] = accuracies_across_tasks

    df_single_task = pd.DataFrame()
    df_single_task['task'] = range(1, 11)
    df_single_task['data_fold'] = shift
    df_single_task['accuracy'] = single_task_accuracies

    summary = (df, df_single_task)
    file_to_save = 'result/result/' + model + str(
        num_points_per_task) + '_' + str(ntrees) + '_' + str(
            shift) + '_' + str(slot) + '.pickle'
    with open(file_to_save, 'wb') as f:
        pickle.dump(summary, f)