Example #1
0
def calculate_selectional_preferences(config_path, model_path, list_preds, vob,
                                      output):
    '''

    :param config_path:
    :param model_path:
    :param list_preds:
    :param vob: dictionary with key of preds,  values are list of words
    :param output:
    :return:
    '''
    cfg = read_config(config_path)

    mdl, fm1, fm2 = loadSemLM21(model_path, cfg['train'], cfg['valid'],
                                cfg['we_dict1'], cfg['we_dict2'], cfg['dep'],
                                cfg['hidden_size1'], cfg['hidden_size2'],
                                cfg['batch_size'], cfg['save_folder'])

    for p in list_preds:
        scores = get_probability_is_argument(mdl, fm1, fm2, p)

        process_probability(fm1,
                            fm2,
                            scores,
                            p,
                            output + "/" + p + ".out.txt",
                            vobs=vob[p])
Example #2
0
def trainModel11(config_path):
    cfg = read_config(config_path)

    trainSemLM11(cfg['train'],
                 cfg['valid'],
                 cfg['we_dict'],
                 cfg['dep'],
                 cfg['hidden_size'],
                 cfg['batch_size'],
                 cfg['save_folder'],
                 load_dt=cfg['load_data'])
Example #3
0
def calculate_selectional_preferences(config_path, model_path, list_preds, vob,
                                      output):
    cfg = read_config(config_path)

    mdl, fm = loadSemLM11(model_path, cfg['train'], cfg['valid'],
                          cfg['we_dict'], cfg['dep'], cfg['hidden_size'],
                          cfg['batch_size'], cfg['save_folder'])

    for p in list_preds:
        scores = get_probability_is_argument(mdl, fm, p)

        process_probability(fm,
                            scores,
                            p,
                            output + "/" + p + ".out.txt",
                            vobs=vob[p])