def setY(self, Y, standardize=False): """ Set phenotype matrix Args: Y: phenotype matrix [N, P] standardize: if True, phenotype is standardized (zero mean, unit variance) """ assert Y.shape[ 0] == self.N, 'VarianceDecomposition:: Incompatible shape' assert Y.shape[ 1] == self.P, 'VarianceDecomposition:: Incompatible shape' if standardize: Y = preprocess.standardize(Y) #check that missing values match the current structure assert (~(sp.isnan(Y).any(axis=1)) == self.Iok).all( ), 'VarianceDecomposition:: pattern of missing values needs to match Y given at initialization' self.Y = Y self.vd.setPheno(Y) self.init = False self.optimum = None self.cache['Sigma'] = None self.cache['Hessian'] = None
def setY(self,Y,standardize=False): """ Set phenotype matrix Args: Y: phenotype matrix [N, P] standardize: if True, phenotype is standardized (zero mean, unit variance) """ assert Y.shape[0]==self.N, 'VarianceDecomposition:: Incompatible shape' assert Y.shape[1]==self.P, 'VarianceDecomposition:: Incompatible shape' if standardize: Y = preprocess.standardize(Y) #check that missing values match the current structure assert (~(sp.isnan(Y).any(axis=1))==self.Iok).all(), 'VarianceDecomposition:: pattern of missing values needs to match Y given at initialization' # TODO: update the current code self.Y = Y self.vd.setPheno(Y) self.init = False self.optimum = None self.cache['Sigma'] = None self.cache['Hessian'] = None
def __init__(self, Y, standardize=False): """ Args: Y: phenotype matrix [N, P] standardize: if True, impute missing phenotype values by mean value, zero-mean and unit-variance phenotype (Boolean, default False) """ #check whether Y is a vector, if yes reshape if (len(Y.shape) == 1): Y = Y[:, sp.newaxis] #create column of 1 for fixed if nothing providede self.N = Y.shape[0] self.P = Y.shape[1] self.Nt = self.N * self.P self.Iok = ~(sp.isnan(Y).any(axis=1)) #outsourced to handle missing values: if standardize: Y = preprocess.standardize(Y) self.Y = Y self.vd = dlimix.CVarianceDecomposition(Y) self.n_randEffs = 0 self.n_fixedEffs = 0 self.gp = None self.init = False self.fast = False self.noisPos = None self.optimum = None # for predictions self.Fstar = [] self.Kstar = [] self.Ntest = None # for multi trait models self.trait_covar_type = [] self.rank = [] self.fixed_tc = [] self.diag = [] self.jitter = [] self.cache = {} self.cache['Sigma'] = None self.cache['Hessian'] = None pass
def __init__(self,Y,standardize=False): """ Args: Y: phenotype matrix [N, P] standardize: if True, impute missing phenotype values by mean value, zero-mean and unit-variance phenotype (Boolean, default False) """ #check whether Y is a vector, if yes reshape if (len(Y.shape)==1): Y = Y[:,sp.newaxis] #create column of 1 for fixed if nothing providede self.N = Y.shape[0] self.P = Y.shape[1] self.Nt = self.N*self.P self.Iok = ~(sp.isnan(Y).any(axis=1)) #outsourced to handle missing values: if standardize: Y=preprocess.standardize(Y) self.Y = Y self.vd = dlimix.CVarianceDecomposition(Y) self.n_randEffs = 0 self.n_fixedEffs = 0 self.gp = None self.init = False self.fast = False self.noisPos = None self.optimum = None # for predictions self.Fstar = [] self.Kstar = [] self.Ntest = None # for multi trait models self.trait_covar_type = [] self.rank = [] self.fixed_tc = [] self.diag = [] self.jitter = [] self.cache = {} self.cache['Sigma'] = None self.cache['Hessian'] = None pass
def __init__(self, Y, standardize=False): """ Args: Y: phenotype matrix [N, P] standardize: if True, impute missing phenotype values by mean value, zero-mean and unit-variance phenotype (Boolean, default False) """ #check whether Y is a vector, if yes reshape if (len(Y.shape) == 1): Y = Y[:, sp.newaxis] #create column of 1 for fixed if nothing provided self.N = Y.shape[0] self.P = Y.shape[1] self.Nt = self.N * self.P self.Iok = ~(sp.isnan(Y).any(axis=1)) #outsourced to handle missing values: if standardize: Y = preprocess.standardize(Y) # set properties self.Y = Y self.n_randEffs = 0 self.noisPos = None # fixed and ranodm effects self.sample_covars = [] self.sample_cross_covars = [] self.trait_covars = [] self.sample_designs = [] self.sample_test_designs = [] self.trait_designs = [] # desinc self._desync() #TODO: check if necessary self.Ntest = None
def __init__(self, Y, standardize=False): """ Args: Y: phenotype matrix [N, P] standardize: if True, impute missing phenotype values by mean value, zero-mean and unit-variance phenotype (Boolean, default False) """ #check whether Y is a vector, if yes reshape if (len(Y.shape)==1): Y = Y[:,sp.newaxis] #create column of 1 for fixed if nothing provided self.N = Y.shape[0] self.P = Y.shape[1] self.Nt = self.N*self.P self.Iok = ~(sp.isnan(Y).any(axis=1)) #outsourced to handle missing values: if standardize: Y = preprocess.standardize(Y) # set properties self.Y = Y self.n_randEffs = 0 self.noisPos = None # fixed and ranodm effects self.sample_covars = [] self.sample_cross_covars = [] self.trait_covars = [] self.sample_designs = [] self.sample_test_designs = [] self.trait_designs = [] # desinc self._desync() #TODO: check if necessary self.Ntest = None