Example #1
0
    def setUp(self):
        SP.random.seed(1)
        self.n_dimensions = 2
        self.n_samples = 100
        self.setXy()
        #self.X = SP.rand(self.n_samples,self.n_dimensions)
        covar = limix.CCovSqexpARD(self.n_dimensions)
        ll = limix.CLikNormalIso()
        covar_params = SP.array([1, 1, 1])
        lik_params = SP.array([0.5])
        hyperparams0 = limix.CGPHyperParams()
        hyperparams0['covar'] = covar_params
        hyperparams0['lik'] = lik_params
        self.constrainU = limix.CGPHyperParams()
        self.constrainL = limix.CGPHyperParams()
        self.constrainU['covar'] = +10 * SP.ones_like(covar_params)
        self.constrainL['covar'] = 0 * SP.ones_like(covar_params)
        self.constrainU['lik'] = +5 * SP.ones_like(lik_params)
        self.constrainL['lik'] = 0 * SP.ones_like(lik_params)

        self.gp = limix.CGPbase(covar, ll)
        self.gp.setX(self.X)
        self.gp.setParams(hyperparams0)
        #self.genY()
        self.gp.setY(self.y)
Example #2
0
    def setUp(self):
        SP.random.seed(1)

        #1. simulate
        self.settings = {'K': 5, 'N': 100, 'D': 80}
        self.simulation = self.simulate()

        N = self.settings['N']
        K = self.settings['K']
        D = self.settings['D']

        #2. setup GP
        covar = limix.CCovLinearISO(K)
        ll = limix.CLikNormalIso()
        #create hyperparm
        covar_params = SP.array([1.0])
        lik_params = SP.array([1.0])
        hyperparams = limix.CGPHyperParams()
        hyperparams['covar'] = covar_params
        hyperparams['lik'] = lik_params
        hyperparams['X'] = self.simulation['X0']
        #cretae GP
        self.gp = limix.CGPbase(covar, ll)
        #set data
        self.gp.setY(self.simulation['Y'])
        self.gp.setX(self.simulation['X0'])
        self.gp.setParams(hyperparams)
        pass
Example #3
0
 def setUp(self):
     SP.random.seed(1)
     self.n = 10
     self.n_dim = 10
     X = SP.rand(self.n, self.n_dim)
     self.C = limix.CLikNormalIso()
     self.name = 'CLikNormalIso'
     self.C.setX(X)
     self.n_params = self.C.getNumberParams()
     params = SP.exp(SP.randn(self.n_params))
     self.C.setParams(params)
Example #4
0
    def __init__(self,
                 Y=None,
                 X0=None,
                 k=1,
                 standardize=False,
                 interaction=True):
        """
		Y:		data [NxG]
		X0:		known latent factors [Nxk0]
		k:		number of latent factors to infer
		"""

        assert Y != None, 'gpCLVM:: set Y!'
        assert X0 != None, 'gpCLVM:: set X0!'

        self.cache = {}
        self.interaction = interaction

        # read data
        self._setY(Y, standardize=standardize)
        self._setX0(X0)
        self.k = k

        # covariance for known latex factor
        self.C0 = limix.CFixedCF(self.K0)

        # covariance for unknow latent factor
        self.C = limix.CProductCF()
        self.Ca = limix.CLowRankCF(self.N, self.k)
        self.C.addCovariance(self.Ca)
        if self.interaction == True:
            self.Cb1 = limix.CFixedCF(SP.ones((self.N, self.N)))
            self.Cb1.setParamMask(SP.zeros(1))
            self.Cb2 = limix.CFixedCF(self.K0)
            self.Cb = limix.CSumCF()
            self.Cb.addCovariance(self.Cb1)
            self.Cb.addCovariance(self.Cb2)
            self.C.addCovariance(self.Cb)

        # total covariance
        covar = limix.CSumCF()
        covar.addCovariance(self.C0)
        covar.addCovariance(self.C)

        # likelihood
        self.ll = limix.CLikNormalIso()

        # init GP and hyper params
        self.gp = limix.CGPbase(covar, self.ll)
        self.gp.setY(self.Y)
Example #5
0
    def setUp(self):
        SP.random.seed(1)

        #1. simulate
        self.settings = {'K': 5, 'N': 100, 'D': 80}
        self.simulation = self.simulate()

        N = self.settings['N']
        K = self.settings['K']
        D = self.settings['D']

        #2. setup GP
        K0 = SP.dot(self.simulation['S'], self.simulation['S'].T)
        K0[:] = 0

        covar1 = limix.CFixedCF(K0)
        covar2 = limix.CCovLinearISO(K)
        covar = limix.CSumCF()
        covar.addCovariance(covar1)
        covar.addCovariance(covar2)

        ll = limix.CLikNormalIso()
        #create hyperparm
        covar_params = SP.array([0.0, 1.0])
        lik_params = SP.array([0.1])
        hyperparams = limix.CGPHyperParams()
        hyperparams['covar'] = covar_params
        hyperparams['lik'] = lik_params
        hyperparams['X'] = self.simulation['X0']
        #cretae GP
        self.gp = limix.CGPbase(covar, ll)
        #set data
        self.gp.setY(self.simulation['Y'])
        self.gp.setX(self.simulation['X0'])
        self.gp.setParams(hyperparams)
        pass
Example #6
0
Y -= Y.mean()
Y /= Y.std()

#2. fitting using limix
GP = {}
#fix covariance, taking population structure
GP['covar_G'] = limix.CFixedCF(Kpopf)
#freeform covariance: requiring number of traits/group (T)
GP['covar_E'] = limix.CCovFreeform(T)

#overall covarianc: product
GP['covar'] = limix.CProductCF()
GP['covar'].addCovariance(GP['covar_G'])
GP['covar'].addCovariance(GP['covar_E'])
#liklihood: gaussian
GP['ll'] = limix.CLikNormalIso()
GP['data'] = limix.CData()
GP['hyperparams'] = limix.CGPHyperParams()

#Create GP instance
GP['gp'] = limix.CGPbase(GP['data'], GP['covar'], GP['ll'])
#set data
GP['gp'].setY(Y)
#input: effectively we require the group for each sample (CCovFreeform requires this)
Xtrain = SP.zeros([Y.shape[0], 1])
Xtrain[N::1] = 1
GP['gp'].setX(Xtrain)

gpopt = limix.CGPopt(GP['gp'])
#constraints: make sure that noise level does not go completel crazy
constrainU = limix.CGPHyperParams()
Example #7
0
    def train(self,rank=20,Kpop=True,LinearARD=False):
        """train panama module"""

        if 0:
            covar  = limix.CCovLinearISO(rank)
            ll  = limix.CLikNormalIso()
            X0 = sp.random.randn(self.N,rank)
            X0 = PCA(self.Y,rank)[0]
            X0 /= sp.sqrt(rank)
            covar_params = sp.array([1.0])
            lik_params = sp.array([1.0])

            hyperparams = limix.CGPHyperParams()
            hyperparams['covar'] = covar_params
            hyperparams['lik'] = lik_params
            hyperparams['X']   = X0
        
            constrainU = limix.CGPHyperParams()
            constrainL = limix.CGPHyperParams()
            constrainU['covar'] = +5*sp.ones_like(covar_params);
            constrainL['covar'] = 0*sp.ones_like(covar_params);
            constrainU['lik'] = +5*sp.ones_like(lik_params);
            constrainL['lik'] = 0*sp.ones_like(lik_params);

        if 1:
            covar  = limix.CSumCF()
            if LinearARD:
                covar_1 =  limix.CCovLinearARD(rank)
                covar_params = []
                for d in range(rank):
                    covar_params.append(1/sp.sqrt(d+2))
            else:
                covar_1 =  limix.CCovLinearISO(rank)
                covar_params = [1.0]
            covar.addCovariance(covar_1)

            if self.use_Kpop:
                covar_2 =  limix.CFixedCF(self.Kpop)
                covar.addCovariance(covar_2)
                covar_params.append(1.0)

            ll  = limix.CLikNormalIso()
            X0 = PCA(self.Y,rank)[0]
            X0 /= sp.sqrt(rank)
            covar_params = sp.array(covar_params)
            lik_params = sp.array([1.0])

            hyperparams = limix.CGPHyperParams()
            hyperparams['covar'] = covar_params
            hyperparams['lik'] = lik_params
            hyperparams['X']   = X0
        
            constrainU = limix.CGPHyperParams()
            constrainL = limix.CGPHyperParams()
            constrainU['covar'] = +5*sp.ones_like(covar_params);
            constrainL['covar'] = -5*sp.ones_like(covar_params);
            constrainU['lik'] = +5*sp.ones_like(lik_params);

            
        gp=limix.CGPbase(covar,ll)
        gp.setY(self.Y)
        gp.setX(X0)
        lml0 = gp.LML(hyperparams)
        dlml0 = gp.LMLgrad(hyperparams)        
        gpopt = limix.CGPopt(gp)
        gpopt.setOptBoundLower(constrainL);
        gpopt.setOptBoundUpper(constrainU);

        t1 = time.time()
        gpopt.opt()
        t2 = time.time()

        #Kpanama
        self.Xpanama = covar_1.getX()
        if LinearARD:
            self.Xpanama /= self.Xpanama.std(0)
        self.Kpanama = covar_1.K()
        self.Kpanama/= self.Kpanama.diagonal().mean()

        # Ktot
        self.Ktot = covar_1.K()
        if self.use_Kpop:
            self.Ktot += covar_2.K()
        self.Ktot/= self.Ktot.diagonal().mean()

        #store variances
        V = {}
        if LinearARD:
            V['LinearARD'] = covar_1.getParams()**2*covar_1.getX().var(0)
        else:
            V['Kpanama'] = sp.array([covar_1.K().diagonal().mean()])
        if self.use_Kpop:
            V['Kpop'] = sp.array([covar_2.K().diagonal().mean()])
        V['noise'] = gp.getParams()['lik']**2
        self.varianceComps = V
Example #8
0
ll_ = lik.GaussLikISO()
hyperparams_ = {'covar': covar_params, 'lik': lik_params}
gp_ = GP.GP(covar_, likelihood=ll_, x=X, y=y)
lml_ = gp_.LML(hyperparams_)
dlml_ = gp_.LMLgrad(hyperparams_)
#optimize using pygp:
opt_params_ = opt.opt_hyper(gp_, hyperparams_)[0]
lmlo_ = gp_.LML(opt_params_)

pdb.set_trace()

#GPMIX:
cov = SP.ones([y.shape[0], 2])
cov[:, 1] = SP.randn(cov.shape[0])
covar = limix.CCovSqexpARD(n_dimensions)
ll = limix.CLikNormalIso()

if 1:
    data = limix.CLinearMean(y, cov)
    data_params = SP.ones([cov.shape[1]])
else:
    data = limix.CData()
    data_params = None

#create hyperparm
hyperparams = limix.CGPHyperParams()
hyperparams['covar'] = covar_params
hyperparams['lik'] = lik_params
if data_params is not None:
    hyperparams['dataTerm'] = data_params