def AncestorPlots(**sfinh_kwargs):
    ''' FQ for the SF Inherited Ancestor galaxy population. This test is mainly 
    to see what the discrepancy between the empirical SF/Q classifcation and the
    parameterized FQ model. Ideally, the model and the 
    '''
    bloodline = Lineage(nsnap_ancestor=sfinh_kwargs['nsnap_ancestor'],
                        subhalo_prop=sfinh_kwargs['subhalo_prop'])
    bloodline.Read([1])
    bloodline.AssignSFR_ancestor(sfr_prop=sfinh_kwargs['sfr_prop'])

    ancestor = getattr(bloodline, 'ancestor')
    ancestor.sfr_prop = sfinh_kwargs['sfr_prop']
    fig_file = lambda prop: ''.join([
        'figure/test/', 'Ancestor',
        str(sfinh_kwargs['nsnap_ancestor']), '.',
        prop.upper(), '.png'
    ])
    ancestor.plotSsfr(savefig=fig_file('ssfr'))
    plt.close()
    # FQ
    ancestor.plotFq(model=True, savefig=fig_file('fq'))
    ancestor.plotSFMS(sfqcut=True,
                      gal_class='all',
                      bovyplot=False,
                      sigSFR=False,
                      model=False,
                      savefig=fig_file('sfms'))
    plt.close()
    return None
Example #2
0
    def _Read_Lineage(self):
        ''' Read in Lineage object and import all the GalPop objects within 
        lineage to Inherit object. 
        '''
        # read in the lineage (< 0.05 seconds for one snapshot)
        if not self.quiet:
            read_time = time.time()
        bloodline = Lineage(nsnap_ancestor=self.nsnap_ancestor,
                            subhalo_prop=self.subhalo_prop,
                            quiet=self.quiet)
        bloodline.Read(self.nsnap_descendants, quiet=self.quiet)

        #DEFUNCT
        #if 'subhalogrowth' in self.sfr_prop.keys():
        #    # depending on whether SFR assign includes subhalo growth AM
        #    sfr_prop['subhalogrowth']['nsnap_descendant'] = nsnap_descendant

        # assign SFR to ancestor object
        bloodline.AssignSFR_ancestor(sfr_prop=self.sfr_prop, quiet=self.quiet)
        if not self.quiet:
            print 'Lineage Read Time = ', time.time() - read_time

        self.ancestor = bloodline.ancestor  # ancestor object
        self.ancestor.tQ[np.where(self.ancestor.tQ != 999.)] = 0.
        self.MshamEvol = self.ancestor.Msham_evol[0]

        self._ImportDescendants(bloodline)

        return None
Example #3
0
def InheritSF(nsnap_descendant,
              nsnap_ancestor=20,
              subhalo_prop=None,
              sfr_prop=None,
              evol_prop=None,
              quiet=True):
    ''' Evolve star formation properties of 'ancestor' CentralGalaxyPopulation class at 
    redshift specified by nsnap_ancestor to descendant CentralGalaxlyPopulation object
    at redshift specified by nsnap_descendant. Both ancestor and descendant objects
    are attributes in the Lineage class, which contains all the 'lineage' information 
    i.e. all the halo tracking information. 

    Parameters
    ----------
    nsnap_ancestor : int
        Snapshot number of ancestor CGPop object. The ancestor object is constructed 
        with from subhalo catalog with subhalo_prop properties. They are also assigned
        SFRs with sfr_prop properties. 
    subhalo_prop : dict
        Dictionary that describes the subhalo properties. The key 'scatter' corresponds
        to the M*-M_halo relation. The key 'soruce' describes the source SMF used for 
        the SHAM masses.
    sfr_prop : dict
        Dictionary that describes the SFR properties assigned to the ancestor CenQue object. 
        The key 'fq' describes the quiescent fraction used for the ancestor while the key
        'sfr' describes the properties of the SFR assignment. 
    evol_prop : dict
        Dictionary that consists of dictionaries which each describe paramter choices in 
        the model. 
        - evol_prop['pq'] dictates the quenching properties. 
        - evol_prop['tau'] dictates the quenching timescale. 
        - evol_prop['sfr'] dictates the SFR evolution. 
        - evol_prop['mass'] dictates the mass evolution. 
    '''
    if isinstance(nsnap_descendant, list):
        d_list = True
    else:
        d_list = False
    # read in the lineage (< 0.05 seconds for one snapshot)
    #read_time = time.time()
    bloodline = Lineage(nsnap_ancestor=nsnap_ancestor,
                        subhalo_prop=subhalo_prop,
                        quiet=quiet)
    if not d_list:
        bloodline.Read(range(nsnap_descendant, nsnap_ancestor), quiet=quiet)
    else:
        bloodline.Read(range(np.min(nsnap_descendant), nsnap_ancestor),
                       quiet=quiet)
    if 'subhalogrowth' in sfr_prop.keys(
    ):  # depending on whether SFR assign includes subhalo growth AM
        sfr_prop['subhalogrowth']['nsnap_descendant'] = nsnap_descendant
    bloodline.AssignSFR_ancestor(sfr_prop=sfr_prop, quiet=quiet)
    #print 'Lineage Read Time = ', time.time() - read_time

    ancestor = bloodline.ancestor  # ancestor object
    t_init = ancestor.t_cosmic
    z_init = ancestor.zsnap
    ancestor.tQ[np.where(ancestor.tQ != 999.)] = 0.

    if not isinstance(nsnap_descendant, list):
        nsnap_descendant = [nsnap_descendant]

    descendants = []
    sf_ancestors, q_ancestors = [], []
    successions, wills = [], []
    for nd in nsnap_descendant:
        des = getattr(bloodline, 'descendant_snapshot' + str(nd))
        des._clean_initialize()  # initialize SF properties
        des.sfr_prop = ancestor.sfr_prop
        # match indices up with each other
        succession, will = intersection_index(
            getattr(des, 'ancestor' + str(nsnap_ancestor)),
            ancestor.snap_index)
        if len(succession) != len(des.mass):
            raise ValueError('Something wrong with the lineage')
        q_ancestor = np.where(
            ancestor.sfr_class[will] == 'quiescent')[0]  # Q ancestors
        sf_ancestor = np.where(
            ancestor.sfr_class[will] == 'star-forming')[0]  # SF ancestors
        if not quiet:
            print "nsnap_descendant = ", nd, "Ancestors: Nq = ", len(
                q_ancestor), ', Nsf = ', len(sf_ancestor)

        descendants.append(des)
        wills.append(will)
        successions.append(succession)
        q_ancestors.append(q_ancestor)
        sf_ancestors.append(sf_ancestor)

    # Evolve queiscent ancestor galaxies
    if not quiet:
        q_time = time.time()
    descendants = _QuiescentEvol(ancestor,
                                 descendants,
                                 successions=successions,
                                 wills=wills,
                                 q_ancestors=q_ancestors)
    if not quiet:
        print 'Quiescent evolution takes ', time.time() - q_time

    # Evolve Star Forming Galaxies
    if not quiet:
        sf_time = time.time()
    ################## PQ BASED DROPPED ##############################
    # if evol_prop['type'] == 'pq_based':
    #     _StarformingEvol_Pq(ancestor, descendant, succession=succession, will=will,
    #             evol_prop=evol_prop, sfr_prop=sfr_prop,
    #             lineage=bloodline)
    # elif evol_prop['type'] == 'simult':
    ################## PQ BASED DROPPED ##############################
    descendants = _StarformingEvol_SimulEvo(ancestor,
                                            descendants,
                                            successions=successions,
                                            wills=wills,
                                            evol_prop=evol_prop,
                                            sfr_prop=sfr_prop,
                                            lineage=bloodline,
                                            quiet=quiet)
    if not quiet:
        print 'Star Forming Evolution takes ', time.time() - sf_time

    descendants = _Overquenching(descendants,
                                 successions=successions,
                                 wills=wills,
                                 sf_ancestors=sf_ancestors)

    for descendant in descendants:
        descendant.data_columns = list(descendant.data_columns) + [
            'ssfr', 'sfr', 'min_ssfr', 'sfr_class'
        ]
        setattr(bloodline, 'descendant_snapshot' + str(descendant.nsnap),
                descendant)
    return bloodline
def InheritSF(nsnap_descendant,
              nsnap_ancestor=20,
              subhalo_prop={
                  'scatter': 0.0,
                  'source': 'li-march'
              },
              sfr_prop={
                  'fq': {
                      'name': 'wetzelsmooth'
                  },
                  'sfms': {
                      'name': 'linear',
                      'mslope': 0.55,
                      'zslope': 1.1
                  }
              },
              evol_prop={
                  'pq': {
                      'slope': 0.05,
                      'yint': 0.0
                  },
                  'tau': {
                      'name': 'line',
                      'fid_mass': 10.75,
                      'slope': -0.6,
                      'yint': 0.6
                  },
                  'sfr': {
                      'dutycycle': {
                          'name': 'notperiodic'
                      }
                  },
                  'mass': {
                      'name': 'sham'
                  }
              }):
    ''' Evolve star formation properties of ancestor CentralGalaxyPopulation class within 
    the Lineage Class to descendant CentralGalaxlyPopulation object

    Parameters
    ----------
    nsnap_ancestor : int
        Snapshot number of ancestor CGPop object. The ancestor object is constructed 
        with from subhalo catalog with subhalo_prop properties. They are also assigned
        SFRs with sfr_prop properties. 
    subhalo_prop : dict
        Dictionary that describes the subhalo properties. The key 'scatter' corresponds
        to the M*-M_halo relation. The key 'soruce' describes the source SMF used for 
        the SHAM masses.
    sfr_prop : dict
        Dictionary that describes the SFR properties assigned to the ancestor CenQue object. 
        The key 'fq' describes the quiescent fraction used for the ancestor while the key
        'sfr' describes the properties of the SFR assignment. 
    evol_prop : dict
        Dictionary that consists of dictionaries which each describe paramter choices in 
        the model. 
        - evol_prop['pq'] dictates the quenching properties. 
        - evol_prop['tau'] dictates the quenching timescale. 
        - evol_prop['sfr'] dictates the SFR evolution. 
        - evol_prop['mass'] dictates the mass evolution. 
    '''
    # make sure that snapshot = 1 is included among imported descendants
    # and the first element of the list
    if isinstance(nsnap_descendant, list):
        raise ValueError('nsnap_descendant arg has to be an int')

    # evolution properties
    pq_prop = evol_prop['pq']
    tau_prop = evol_prop['tau']
    sfrevol_prop = evol_prop['sfr']
    massevol_prop = evol_prop['mass']

    # read in the lineage (< 0.05 seconds for one snapshot)
    read_time = time.time()
    bloodline = Lineage(nsnap_ancestor=nsnap_ancestor,
                        subhalo_prop=subhalo_prop)
    bloodline.Read(range(nsnap_descendant, nsnap_ancestor), sfr_prop='default')
    if 'subhalogrowth' in sfr_prop.keys():
        sfr_prop['subhalogrowth']['nsnap_descendant'] = nsnap_descendant
    bloodline.AssignSFR_ancestor(sfr_prop=sfr_prop)
    print 'Lineage Read Time = ', time.time() - read_time

    ancestor = bloodline.ancestor  # ancestor object
    t_init = ancestor.t_cosmic
    z_init = ancestor.zsnap
    # descendant object
    descendant = getattr(bloodline,
                         'descendant_snapshot' + str(nsnap_descendant))
    t_final = descendant.t_cosmic
    z_final = descendant.zsnap
    print 'Evolve until z = ', z_final

    # initialize SF properties of descendant
    n_descendant = len(descendant.snap_index)
    descendant.sfr = np.repeat(-999., n_descendant)
    descendant.ssfr = np.repeat(-999., n_descendant)
    descendant.min_ssfr = np.repeat(-999., n_descendant)
    descendant.tau = np.repeat(-999., n_descendant)
    descendant.sfr_class = np.chararray(n_descendant, itemsize=16)
    descendant.sfr_class[:] = ''

    succession, will = intersection_index(
        getattr(descendant, 'ancestor' + str(nsnap_ancestor)),
        ancestor.snap_index)
    if len(succession) != len(descendant.mass):
        raise ValueError('Something wrong with the lineage')
    q_ancestors = np.where(
        ancestor.sfr_class[will] == 'quiescent')[0]  # Q ancestors
    sf_ancestors = np.where(
        ancestor.sfr_class[will] == 'star-forming')[0]  # SF ancestors

    # Evolve queiscent ancestor galaxies
    q_time = time.time()
    descendant = _QuiescentEvol(ancestor,
                                descendant,
                                succession=succession,
                                will=will)
    print 'Quiescent evolution takes ', time.time() - q_time
    # Evolve Star Forming Galaxies
    sf_time = time.time()
    _StarformingEvol(ancestor,
                     descendant,
                     succession=succession,
                     will=will,
                     evol_prop=evol_prop,
                     sfr_prop=sfr_prop,
                     lineage=bloodline)
    print 'Star Forming Evolution takes ', time.time() - sf_time

    # Deal with over quenched galaxies
    overquenched = np.where(descendant.min_ssfr[succession[sf_ancestors]] >
                            descendant.ssfr[succession[sf_ancestors]])
    if len(overquenched[0]) > 0:
        descendant.ssfr[succession[
            sf_ancestors[overquenched]]] = descendant.min_ssfr[succession[
                sf_ancestors[overquenched]]]
        descendant.sfr[succession[sf_ancestors[overquenched]]] = descendant.ssfr[succession[sf_ancestors[overquenched]]] \
                + descendant.mass[succession[sf_ancestors[overquenched]]]
        #descendant.tau[succession[sf_ancestors[overquenched]]] = -999.

    descendant.data_columns = list(descendant.data_columns) + [
        'ssfr', 'sfr', 'min_ssfr', 'sfr_class'
    ]  #, 'tau'])
    setattr(bloodline, 'descendant_snapshot' + str(nsnap_descendant),
            descendant)

    return bloodline