Example #1
0
def neuron_output(weights, inputs):
    a = sigmoid(dot(weights, inputs))
    print "weights :", weights
    print "inputs :", inputs
    print "dot :", dot(weights, inputs)
    print "sigmoid :", a
    return a
def _negative_log_likelihood(x: Vector, y: float, weights: Vector) -> float:
    """
    Return negative log likehood of an input (dotted by function weights)
    The dot product transform by the logistic function is 'p'
    Therefore for y = 1, we will return 1 - p
    and if y = 0, we will just return p
    """
    if y == 1:
        return -math.log(1 - logistic(dot(x, weights)))
    elif y == 0:
        return -math.log(logistic(dot(x, weights)))
    else:
        raise ValueError(f"invalid y value: {y}")
Example #3
0
    def test_multiply_matrix_matrix_03(self):
        A = [[11, 12, 13],
             [21, 22, 23]]
        B = [[111, 112],
             [121, 122],
             [131, 132]]
        C = la.multiply_matrix_matrix(A, B)

        BT = zip(*B)

        expected = [[la.dot(A[0], BT[0]), la.dot(A[0], BT[1])],
                    [la.dot(A[1], BT[0]), la.dot(A[1], BT[1])]]

        self.assertSequenceEqual(C, expected)
Example #4
0
def backpropagate(network, input_vector, target):

    hidden_outputs, outputs = feed_forward(network, input_vector)
    
    '''the output * (1 - output) is from the derivative of sigmoid'''
    output_deltas = [output * (1 - output) * (output - target[i])
                     for i, output in enumerate(outputs)]
                     
    '''adjust weights for output layer (network[-1])'''
    for i, output_neuron in enumerate(network[-1]):
        '''focus on the ith output layer neuron'''
        for j, hidden_output in enumerate(hidden_outputs + [1]):
            '''-adjust the jth weight based on both
            this neuron's delta and its jth input'''
            output_neuron[j] = output_neuron[j] - output_deltas[i] * hidden_output

    '''back-propagate errors to hidden layer'''
    hidden_deltas = [hidden_output * (1 - hidden_output) * 
                      dot(output_deltas, [n[i] for n in network[-1]]) 
                     for i, hidden_output in enumerate(hidden_outputs)]

    '''adjust weights for hidden layer (network[0])'''
    for i, hidden_neuron in enumerate(network[0]):
        for j, input in enumerate(input_vector + [1]):
            hidden_neuron[j] = hidden_neuron[j] - hidden_deltas[i] * input
def logistic_log_likelihood_i(x_i, y_i, beta):
    # Implement the log likelihood function for 1 training example.
    f = logistic(dot(x_i, beta))
    if y_i == 1:
        return math.log(f)
    else:
        return math.log(1 - f)
def logistic_log_partial_ij(x_i, y_i, beta, j):
    # Implement the computation of partial derivative of log likelihood w.r.t. beta_j.
    """here i is the index of the data point,
    j the index of the derivative"""

    f = logistic(dot(x_i, beta))
    return (y_i - f) * x_i[j]
Example #7
0
    def test_dot_04(self):
        a = [1.0, 2.0, 3.0]
        b = [0.0, 1.0, 0.0]
        c = la.dot(a, b)
        expected = 2.0

        self.assertAlmostEqual(c, expected)
Example #8
0
def sqerror_gradients(network: List[List[Vector]], input_vector: Vector,
                      target_vector: Vector) -> List[List[Vector]]:
    """
    Given a neural network, an input vector, and a target vector,
    make a prediction and compute the gradient of the squared error
    loss with respect to the neuron weights.
    """
    # forward pass
    hidden_outputs, outputs = feed_forward(network, input_vector)

    # gradients with respect to output neuron pre-activation outputs
    output_deltas = [
        output * (1 - output) * (output - target)
        for output, target in zip(outputs, target_vector)
    ]

    # gradients with respect to output neuron weights
    output_grads = [[
        output_deltas[i] * hidden_output
        for hidden_output in hidden_outputs + [1]
    ] for i, output_neuron in enumerate(network[-1])]

    # gradients with respect to hidden neuron pre-activation outputs
    hidden_deltas = [
        hidden_output * (1 - hidden_output) *
        dot(output_deltas, [n[i] for n in network[-1]])
        for i, hidden_output in enumerate(hidden_outputs)
    ]

    # gradients with respect to hidden neuron weights
    hidden_grads = [[hidden_deltas[i] * input for input in input_vector + [1]]
                    for i, hidden_neuron in enumerate(network[0])]

    return [hidden_grads, output_grads]
def _negative_log_partial_j(x: Vector, y: float, beta: Vector,
                            j: int) -> float:
    """
    The j-th partial derivative for one data pont
    here i is the index of the data point
    """
    return -(y - logistic(dot(x, beta))) * x[j]
Example #10
0
def neuron_output(weights, inputs):
    """
    print weights
    print "----------------------------"
    print inputs
    """
    return sigmoid(dot(weights, inputs))
Example #11
0
def backpropagate(network, input_vector, targets):
    output_layer = network[-1]
    hidden_outputs, outputs = feed_forward(network, input_vector)
    # the output * (1 - output) is from the derivative of sigmoid
    output_deltas = [
        output * (1 - output) * (output - target)
        for output, target in zip(outputs, targets)
    ]
    # adjust weights for output layer, one neuron at a time
    for i, output_neuron in enumerate(network[-1]):
        # focus on the ith output layer neuron
        for j, hidden_output in enumerate(hidden_outputs + [1]):
            # adjust the jth weight based on both
            # this neuron's delta and its jth input
            output_neuron[j] -= output_deltas[i] * hidden_output
    # back-propagate errors to hidden layer
    hidden_deltas = [
        hidden_output * (1 - hidden_output) *
        dot(output_deltas, [n[i] for n in output_layer])
        for i, hidden_output in enumerate(hidden_outputs)
    ]
    # adjust weights for hidden layer, one neuron at a time
    for i, hidden_neuron in enumerate(network[0]):
        for j, input in enumerate(input_vector + [1]):
            hidden_neuron[j] -= hidden_deltas[i] * input
Example #12
0
def backpropagate(network, input_vector, target):

    hidden_outputs, outputs = feed_forward(network, input_vector)

    # the output * (1 - output) is from the derivative of sigmoid
    output_deltas = [
        output * (1 - output) * (output - target[i])
        for i, output in enumerate(outputs)
    ]

    # adjust weights for output layer (network[-1])
    for i, output_neuron in enumerate(network[-1]):
        for j, hidden_output in enumerate(hidden_outputs + [1]):
            output_neuron[j] -= output_deltas[i] * hidden_output

    # back-propagate errors to hidden layer
    hidden_deltas = [
        hidden_output * (1 - hidden_output) *
        dot(output_deltas, [n[i] for n in network[-1]])
        for i, hidden_output in enumerate(hidden_outputs)
    ]

    # adjust weights for hidden layer (network[0])
    for i, hidden_neuron in enumerate(network[0]):
        for j, input in enumerate(input_vector + [1]):
            hidden_neuron[j] -= hidden_deltas[i] * input
Example #13
0
    def test_dot_05(self):
        a = [ 3.0, 4.0]
        b = [-4.0, 3.0]
        c = la.dot(a, b)
        expected = 0.0

        self.assertAlmostEqual(c, expected)
def logistic_log_likelihood_i(x_i, y_i, beta):
    # Implement the log likelihood function for 1 training example.
    f = logistic(dot(x_i, beta))
    if y_i == 1:
        return math.log(f)
    else:
        return math.log(1 - f)
Example #15
0
 def setup2(self):
     random.seed(1)
     aNeuron = Neuron(n_inputs=2, activation_function=sigmoid_function, weight_init_function=weight_init_function_random, learning_rate_function=learning_rate_function)
     aNeuron.weights = [1.0,0.5,0.25]
     inputs = [2.0,1.5,1.0]
     output = aNeuron.calc_neurons_output(inputs)
     expected = sigmoid_function( dot(inputs, aNeuron.weights) )
     return output, expected
def directional_differenciate(f: Callable[[Vector], float],
                           v: Vector,
                           u: Vector) -> float:
    ''' return the rate of change in the dirrection of the unit vector u
    let f(x, y, z, ...) map f: R x ... x R -> R. Assume f is differentiable; therefore, continuous:
    D_u f(x, y, z, ...) = \/f * u, where \/f is the gradient vector of f
    '''
    return dot(gradient_vector(f, v), u)
Example #17
0
    def forward(self, input: Tensor) -> Tensor:
        # Save the input to use in the backward pass.
        self.input = input

        # Return the vector of neuron outputs.
        return [
            dot(input, self.w[o]) + self.b[o] for o in range(self.output_dim)
        ]
def logistic_log_partial_ij(x_i, y_i, beta, j):
    # Implement the computation of partial derivative of log likelihood w.r.t. beta_j.

    """here i is the index of the data point,
    j the index of the derivative"""

    f = logistic(dot(x_i, beta))
    return (y_i - f) * x_i[j]
Example #19
0
def neuron_output(weights, inputs):
    a = sigmoid(dot(weights, inputs))
    #    print "\nneuron_output..."
    #    print "weights :", weights
    #    print "inputs :", inputs
    #    print "dot :", dot(weights, inputs)
    #    print "sigmoid :", a
    #input()
    return a
Example #20
0
    def test_dot_01(self):
        a = (1.0, 1.0)
        b = (1.0, 1.0)
        c = la.dot(a, b)
        expected = 2.0

        self.assertSequenceEqual(a, (1.0, 1.0))
        self.assertSequenceEqual(b, (1.0, 1.0))

        self.assertAlmostEqual(c, expected)
Example #21
0
def covariance(x, y):
    """ x and y should have the same length

    :x: first variable (list)
    :y: second variable (list)
    :returns: integer

    """
    n = len(x)
    return dot(de_mean(x), de_mean(y)) / (n - 1)
Example #22
0
 def setup2(self):
     random.seed(1)
     aNeuron = Neuron(n_inputs=2,
                      activation_function=sigmoid_function,
                      weight_init_function=weight_init_function_random,
                      learning_rate_function=learning_rate_function)
     aNeuron.weights = [1.0, 0.5, 0.25]
     inputs = [2.0, 1.5, 1.0]
     output = aNeuron.calc_neurons_output(inputs)
     expected = sigmoid_function(dot(inputs, aNeuron.weights))
     return output, expected
def classification_performance_summary(x_test, y_test, beta):
    true_positives = 0
    false_positives = 0
    true_negatives = 0
    false_negatives = 0
    for x_i, y_i in zip(x_test, y_test):
        predict = round(logistic(dot(beta_hat, x_i)))
        if y_i == 1 and predict == 1: 
            true_positives += 1
        elif y_i == 1 and predict == 0:
            false_negatives += 1
        elif y_i == 0 and predict == 1:
            false_positives += 1
        else:
            true_negatives += 1
    return true_positives, false_positives, true_negatives, false_negatives
Example #24
0
def make_graph_dot_product_as_vector_projection(plt):
    v = [2, 1]
    w = [math.sqrt(.25), math.sqrt(.75)]
    c = dot(v, w)
    vonw = scalar_multiply(c, w)
    o = [0, 0]

    plt.arrow(0, 0, v[0], v[1],
              width=0.002, head_width=.1, length_includes_head=True)
    plt.annotate("v", v, xytext=[v[0] + 0.1, v[1]])
    plt.arrow(0, 0, w[0], w[1],
              width=0.002, head_width=.1, length_includes_head=True)
    plt.annotate("w", w, xytext=[w[0] - 0.1, w[1]])
    plt.arrow(0, 0, vonw[0], vonw[1], length_includes_head=True)
    plt.annotate(u"(v•w)w", vonw, xytext=[vonw[0] - 0.1, vonw[1] + 0.1])
    plt.arrow(v[0], v[1], vonw[0] - v[0], vonw[1] - v[1],
              linestyle='dotted', length_includes_head=True)
    plt.scatter(*zip(v, w, o), marker='.')
    plt.axis('equal')
    plt.show()
Example #25
0
def backpropagate(network, input_vector, target):

    hidden_outputs, outputs = feed_forward(network, input_vector)
    #    print "\nhidden_outputs :", hidden_outputs
    #    print "outputs:", outputs
    #    for i, output in enumerate(outputs):
    #        print target[i]
    #    print "target:", target[i]

    # the output * (1 - output) is from the derivative of sigmoid
    output_deltas = [
        output * (1 - output) * (output - target[i])
        for i, output in enumerate(outputs)
    ]

    #    print "output_deltas :\n", output_deltas

    #    print "network[-1] before :\n", network[-1]
    # adjust weights for output layer (network[-1])
    for i, output_neuron in enumerate(network[-1]):
        for j, hidden_output in enumerate(hidden_outputs + [1]):
            #            print "before: \n", output_neuron[j]
            #            print hidden_output
            #            print hidden_output * output_deltas[i]
            output_neuron[j] -= output_deltas[i] * hidden_output
#            print "after : \n", output_neuron[j]

#    print "network[-1] after  :\n", network[-1]

# back-propagate errors to hidden layer
    hidden_deltas = [
        hidden_output * (1 - hidden_output) *
        dot(output_deltas, [n[i] for n in network[-1]])
        for i, hidden_output in enumerate(hidden_outputs)
    ]

    # adjust weights for hidden layer (network[0])
    for i, hidden_neuron in enumerate(network[0]):
        for j, input1 in enumerate(input_vector + [1]):
            hidden_neuron[j] -= hidden_deltas[i] * input1
Example #26
0
def backpropagate(network, input_vector, target):

    hidden_outputs, outputs = feed_forward(network, input_vector)
    
    # the output * (1 - output) is from the derivative of sigmoid
    output_deltas = [output * (1 - output) * (output - target[i])
                     for i, output in enumerate(outputs)]
                     
    # adjust weights for output layer (network[-1])
    for i, output_neuron in enumerate(network[-1]):
        for j, hidden_output in enumerate(hidden_outputs + [1]):
            output_neuron[j] -= output_deltas[i] * hidden_output

    # back-propagate errors to hidden layer
    hidden_deltas = [hidden_output * (1 - hidden_output) * 
                      dot(output_deltas, [n[i] for n in network[-1]]) 
                     for i, hidden_output in enumerate(hidden_outputs)]

    # adjust weights for hidden layer (network[0])
    for i, hidden_neuron in enumerate(network[0]):
        for j, input in enumerate(input_vector + [1]):
            hidden_neuron[j] -= hidden_deltas[i] * input
def project(v, w):
    """returns the projection of v onto the direction w"""
    projection_length = dot(v, w)
    return scalar_multiply(projection_length, w)
def directional_variance_i(x_i, w):
    """the variance of the row x_i in the direction w"""
    return dot(x_i, direction(w)) ** 2
Example #29
0
def logistic_log_likelihood_i(x_i, y_i, beta):
    if y_i == 1:
        return math.log(logistic(dot(x_i, beta)))
    else:
        return math.log(1 - logistic(dot(x_i, beta)))
Example #30
0
def covariance(x, y):
    n = len(x)
    return dot(de_mean(x), de_mean(y)) / (n - 1)
    random.seed(0) # so that you get the same results as me

    bootstrap_betas = bootstrap_statistic(list(zip(x, daily_minutes_good)),
                                          estimate_sample_beta,
                                          100)

    bootstrap_standard_errors = [
        standard_deviation([beta[i] for beta in bootstrap_betas])
        for i in range(4)]

    print("bootstrap standard errors", bootstrap_standard_errors)
    print()

    print("p_value(30.63, 1.174)", p_value(30.63, 1.174))
    print("p_value(0.972, 0.079)", p_value(0.972, 0.079))
    print("p_value(-1.868, 0.131)", p_value(-1.868, 0.131))
    print("p_value(0.911, 0.990)", p_value(0.911, 0.990))
    print()

    print("regularization")

    random.seed(0)
    for alpha in [0.0, 0.01, 0.1, 1, 10]:
        beta = estimate_beta_ridge(x, daily_minutes_good, alpha=alpha)
        print("alpha", alpha)
        print("beta", beta)
        print("dot(beta[1:],beta[1:])", dot(beta[1:], beta[1:]))
        print("r-squared", multiple_r_squared(x, daily_minutes_good, beta))
        print()
Example #32
0
def predict(x_i, beta):
    return dot(x_i, beta)
def matrix_product_entry(A, B, i, j):
    return dot(get_row(A, i), get_column(B, j))
Example #34
0
def directional_variance_i(x_i, w):
    return dot(x_i, direction(w)) ** 2
Example #35
0
def directional_variance_gradient_i(x_i, w):
    projectionl_length = dot(x_i, direction(w))
    return [2 * projection_length * x_ij for x_ij in x_i]
def logistic_log_partial_ij(x_i, y_i, beta, j):
    """here i is the index of the data point,
    j the index of the derivative"""

    return (y_i - logistic(dot(x_i, beta))) * x_i[j]
def transform_vector(v, components):
    return [dot(v, w) for w in components]
def project(v, w):
    """return the projection of v onto w"""
    coefficient = dot(v, w)
    return scalar_multiply(coefficient, w)
def directional_variance_gradient_i(x_i, w):
    """the contribution of row x_i to the gradient of
    the direction-w variance"""
    projection_length = dot(x_i, direction(w))
    return [2 * projection_length * x_ij for x_ij in x_i]
    # and maximize using gradient descent
    beta_hat = maximize_batch(fn, gradient_fn, beta_0)

    print("beta_batch", beta_hat)

    beta_0 = [1, 1, 1]
    beta_hat = maximize_stochastic(logistic_log_likelihood_i,
                                   logistic_log_gradient_i,
                                   x_train, y_train, beta_0)

    print("beta stochastic", beta_hat)

    true_positives = false_positives = true_negatives = false_negatives = 0

    for x_i, y_i in zip(x_test, y_test):
        predict = logistic(dot(beta_hat, x_i))

        if y_i == 1 and predict >= 0.5:  # TP: paid and we predict paid
            true_positives += 1
        elif y_i == 1:                   # FN: paid and we predict unpaid
            false_negatives += 1
        elif predict >= 0.5:             # FP: unpaid and we predict paid
            false_positives += 1
        else:                            # TN: unpaid and we predict unpaid
            true_negatives += 1

    precision = true_positives / (true_positives + false_positives)
    recall = true_positives / (true_positives + false_negatives)

    print("precision", precision)
    print("recall", recall)
Example #41
0
def transform_vector(v, components):
    return [dot(v, w) for w in components]
def logistic_log_likelihood_i(x_i, y_i, beta):
    if y_i == 1:
        return math.log(logistic(dot(x_i, beta)))
    else:
        return math.log(1 - logistic(dot(x_i, beta)))
Example #43
0
    random.seed(0)  # so that you get the same results as me

    bootstrap_betas = bootstrap_statistic(zip(x, daily_minutes_good),
                                          estimate_sample_beta, 100)

    bootstrap_standard_errors = [
        standard_deviation([beta[i] for beta in bootstrap_betas])
        for i in range(4)
    ]

    print "bootstrap standard errors", bootstrap_standard_errors
    print

    print "p_value(30.63, 1.174)", p_value(30.63, 1.174)
    print "p_value(0.972, 0.079)", p_value(0.972, 0.079)
    print "p_value(-1.868, 0.131)", p_value(-1.868, 0.131)
    print "p_value(0.911, 0.990)", p_value(0.911, 0.990)
    print

    print "regularization"

    random.seed(0)
    for alpha in [0.0, 0.01, 0.1, 1, 10]:
        beta = estimate_beta_ridge(x, daily_minutes_good, alpha=alpha)
        print "alpha", alpha
        print "beta", beta
        print "dot(beta[1:],beta[1:])", dot(beta[1:], beta[1:])
        print "r-squared", multiple_r_squared(x, daily_minutes_good, beta)
        print
Example #44
0
def covariance(x, y):
    n = len(x)
    return dot(de_mean(x), de_mean(y)) / (n-1)
Example #45
0
def ridge_penalty(beta, alpha):
    return alpha * dot(beta[1:], beta[1:])
def neuron_output(weights, inputs):
    return sigmoid(dot(weights, inputs))
def _negative_log_partial_derivative(x: Vector, y: float, beta: Vector,
                                     j: int) -> float:
    """Calculate jth partial derivative for one row"""
    return -(y - logistic(dot(x, beta))) * x[j]
Example #48
0
def perceptron_output(weights, bias, x):
    """returns 1 if the perceptron 'fires', 0 if not"""
    return step_function(dot(weights, x) + bias)
Example #49
0
    # and maximize using gradient descent
    beta_hat = maximize_batch(fn, gradient_fn, beta_0)

    print "beta_batch", beta_hat

    beta_0 = [1, 1, 1]
    beta_hat = maximize_stochastic(logistic_log_likelihood_i,
                                   logistic_log_gradient_i, x_train, y_train,
                                   beta_0)

    print "beta stochastic", beta_hat

    true_positives = false_positives = true_negatives = false_negatives = 0

    for x_i, y_i in zip(x_test, y_test):
        predict = logistic(dot(beta_hat, x_i))

        if y_i == 1 and predict >= 0.5:  # TP: paid and we predict paid
            true_positives += 1
        elif y_i == 1:  # FN: paid and we predict unpaid
            false_negatives += 1
        elif predict >= 0.5:  # FP: unpaid and we predict paid
            false_positives += 1
        else:  # TN: unpaid and we predict unpaid
            true_negatives += 1

    precision = true_positives / (true_positives + false_positives)
    recall = true_positives / (true_positives + false_negatives)

    print "precision", precision
    print "recall", recall
Example #50
0
def project(v, w):
    projection_length = dot(v, w)
    return scalar_multiply(projection_length, w)
Example #51
0
def logistic_log_partial_ij(x_i, y_i, beta, j):
    """here i is the index of the data point,
    j the index of the derivative"""

    return (y_i - logistic(dot(x_i, beta))) * x_i[j]
def cosine_similarity(v, w):
    return dot(v, w) / math.sqrt(dot(v, v) * dot(w, w))
def perceptron_output(weights, bias, x):
    """returns 1 if the perceptron 'fires', 0 if not"""
    return step_function(dot(weights, x) + bias)
Example #54
0
    # and maximize using gradient descent
    beta_hat = maximize_batch(fn, gradient_fn, beta_0)

    print "beta_batch", beta_hat

    beta_0 = [1, 1, 1]
    beta_hat = maximize_stochastic(logistic_log_likelihood_i,
                                   logistic_log_gradient_i,
                                   x_train, y_train, beta_0)

    print "beta stochastic", beta_hat

    true_positives = false_positives = true_negatives = false_negatives = 0

    for x_i, y_i in zip(x_test, y_test):
        predict = logistic(dot(beta_hat, x_i))

        if y_i == 1 and predict >= 0.5:  # TP: paid and we predict paid
            true_positives += 1
        elif y_i == 1:  # FN: paid and we predict unpaid
            false_negatives += 1
        elif predict >= 0.5:  # FP: unpaid and we predict paid
            false_positives += 1
        else:  # TN: unpaid and we predict unpaid
            true_negatives += 1

    precision = true_positives / (true_positives + false_positives)
    recall = true_positives / (true_positives + false_negatives)

    x1 = [1,56000]
    x2 = [3.7,60000]
def matrix_product_entry(A, B, i, j):
    return dot(get_row(A, i), get_column(B, j))
    random.seed(0) # so that you get the same results as me

    bootstrap_betas = bootstrap_statistic(zip(x, daily_minutes_good),
                                          estimate_sample_beta,
                                          100)

    bootstrap_standard_errors = [
        standard_deviation([beta[i] for beta in bootstrap_betas])
        for i in range(4)]

    print "bootstrap standard errors", bootstrap_standard_errors
    print

    print "p_value(30.63, 1.174)", p_value(30.63, 1.174)
    print "p_value(0.972, 0.079)", p_value(0.972, 0.079)
    print "p_value(-1.868, 0.131)", p_value(-1.868, 0.131)
    print "p_value(0.911, 0.990)", p_value(0.911, 0.990)
    print

    print "regularization"

    random.seed(0)
    for alpha in [0.0, 0.01, 0.1, 1, 10]:
        beta = estimate_beta_ridge(x, daily_minutes_good, alpha=alpha)
        print "alpha", alpha
        print "beta", beta
        print "dot(beta[1:],beta[1:])", dot(beta[1:], beta[1:])
        print "r-squared", multiple_r_squared(x, daily_minutes_good, beta)
        print
Example #57
0
def neuron_output(weights, inputs):
    return sigmoid(dot(weights, inputs))
def predict(x_i, beta):
    return dot(x_i, beta)
def ridge_penalty(beta, alpha):
  return alpha * dot(beta[1:], beta[1:])
x_train, x_test, y_train, y_test = train_test_split(rescaled_x, y, 0.33)

# want to maximixe log likelihood on the training data
fn = partial(logistic_log_likelihood, x_train, y_train)
gradient_fn = partial(logistic_log_gradient, x_train, y_train)

beta_0 = [random.random() for _ in range(3)]

beta_hat = maximize_batch(fn, gradient_fn, beta_0)

print(beta_hat)

true_positive = false_positive = true_negative = false_negative = 0

for x_i, y_i in zip(x_test, y_test):
    predict = logistic(dot(beta_hat, x_i))

    if y_i == 1 and predict >= 0.5:
        true_positive += 1
    elif y_i == 1:
        false_negative += 1
    elif predict >= 0.5:
        false_positive += 1
    else:
        true_negative += 1

precision = true_positive / (true_positive + false_positive)
recall = true_positive / (true_positive + false_negative)

print(precision)
print(recall)