Example #1
0
def test_unknown_kernel(data):
    mod = LinearFactorModel(data.portfolios, data.factors)
    with pytest.raises(ValueError):
        mod.fit(cov_type="unknown")
    mod = LinearFactorModelGMM(data.portfolios, data.factors)
    with pytest.raises(ValueError):
        mod.fit(cov_type="unknown")
Example #2
0
def test_repr(data):
    mod = LinearFactorModelGMM(data.portfolios, data.factors)
    assert "LinearFactorModelGMM" in mod.__repr__()
    assert str(data.portfolios.shape[1]) + " test portfolios" in mod.__repr__()
    assert str(data.factors.shape[1]) + " factors" in mod.__repr__()
    mod = LinearFactorModel(data.portfolios, data.factors, risk_free=True)
    assert "LinearFactorModel" in mod.__repr__()
    assert "Estimated risk-free" in mod.__repr__()
    assert "True" in mod.__repr__()
    mod = TradedFactorModel(data.portfolios, data.factors)
    assert "TradedFactorModel" in mod.__repr__()
    assert str(hex(id(mod))) in mod.__repr__()
Example #3
0
def test_repr(data):
    mod = LinearFactorModelGMM(data.portfolios, data.factors)
    assert 'LinearFactorModelGMM' in mod.__repr__()
    assert str(data.portfolios.shape[1]) + ' test portfolios' in mod.__repr__()
    assert str(data.factors.shape[1]) + ' factors' in mod.__repr__()
    mod = LinearFactorModel(data.portfolios, data.factors, risk_free=True)
    assert 'LinearFactorModel' in mod.__repr__()
    assert 'Estimated risk-free' in mod.__repr__()
    assert 'True' in mod.__repr__()
    mod = TradedFactorModel(data.portfolios, data.factors)
    assert 'TradedFactorModel' in mod.__repr__()
    assert str(hex(id(mod))) in mod.__repr__()
Example #4
0
def test_errors(data):
    p = data.portfolios.copy()
    f = data.factors.copy()
    if isinstance(p, pd.DataFrame):
        p2 = p.copy()
        p3 = p.copy().iloc[:-1]
        p4 = p.copy()
        p5 = p.copy().iloc[:f.shape[1] - 1, :1]
        p4 = p4.iloc[:, :(f.shape[1] - 1)]
        p2["dupe"] = p.iloc[:, 0]
        p["const"] = 1.0

        f5 = f.copy()
        f5 = f5.iloc[:p5.shape[0]]
        f2 = f.copy()
        f2["dupe"] = f.iloc[:, 0]
        f["const"] = 1.0
    else:
        p2 = np.c_[p, p[:, [0]]]
        p3 = p.copy()[:-1]
        p4 = p.copy()
        p5 = p.copy()[:f.shape[1] - 1, :1]
        p4 = p4[:, :(f.shape[1] - 1)]
        p = np.c_[np.ones((p.shape[0], 1)), p]

        f5 = f.copy()
        f5 = f5[:p5.shape[0]]
        f2 = np.c_[f, f[:, [0]]]
        f = np.c_[np.ones((f.shape[0], 1)), f]

    with pytest.raises(ValueError):
        TradedFactorModel(p, data.factors)
    with pytest.raises(ValueError):
        TradedFactorModel(p2, data.factors)
    with pytest.raises(ValueError):
        TradedFactorModel(p3, data.factors)
    with pytest.raises(ValueError):
        TradedFactorModel(data.portfolios, f)
    with pytest.raises(ValueError):
        TradedFactorModel(data.portfolios, f2)
    with pytest.raises(ValueError):
        TradedFactorModel(p5, f5)
    with pytest.raises(ValueError):
        LinearFactorModel(p4, data.factors)
Example #5
0
def test_linear_model_parameters_risk_free_gls(data):
    mod = LinearFactorModel(data.portfolios, data.factors, risk_free=True)
    p = mod.portfolios.ndarray
    sigma = np.cov(p.T)
    val, vec = np.linalg.eigh(sigma)
    sigma_m12 = vec @ np.diag(1.0 / np.sqrt(val)) @ vec.T
    sigma_inv = np.linalg.inv(sigma)

    mod = LinearFactorModel(data.portfolios,
                            data.factors,
                            risk_free=True,
                            sigma=sigma)
    assert 'using GLS' in str(mod)
    res = mod.fit()
    f = mod.factors.ndarray
    p = mod.portfolios.ndarray
    n = f.shape[0]
    moments = np.zeros(
        (n, p.shape[1] * (f.shape[1] + 1) + f.shape[1] + 1 + p.shape[1]))
    fc = np.c_[np.ones((n, 1)), f]
    betas = lstsq(fc, p)[0]
    eps = p - fc @ betas
    loc = 0
    for i in range(eps.shape[1]):
        for j in range(fc.shape[1]):
            moments[:, loc] = eps[:, i] * fc[:, j]
            loc += 1
    bc = np.c_[np.ones((p.shape[1], 1)), betas[1:, :].T]
    lam = lstsq(sigma_m12 @ bc, sigma_m12 @ p.mean(0)[:, None])[0]
    pricing_errors = p - (bc @ lam).T

    for i in range(lam.shape[0]):
        lam_error = pricing_errors @ sigma_inv @ bc[:, [i]]
        moments[:, loc] = lam_error.squeeze()
        loc += 1
    alphas = p.mean(0)[:, None] - bc @ lam
    moments[:, loc:] = pricing_errors - alphas.T
    mod_moments = mod._moments(eps, bc, lam, alphas, pricing_errors)

    assert_allclose(res.betas, bc[:, 1:])
    assert_allclose(res.risk_premia, lam.squeeze())
    assert_allclose(res.alphas, alphas.squeeze())
    assert_allclose(moments, mod_moments)

    m = moments.shape[1]
    jac = np.eye(m)
    block1 = p.shape[1] * (f.shape[1] + 1)
    # 1,1

    jac[:block1, :block1] = np.kron(np.eye(p.shape[1]), fc.T @ fc / n)
    # 2, 1
    loc = 0
    nport, nf = p.shape[1], f.shape[1]
    block2 = block1 + nf + 1
    bct = sigma_inv @ bc
    at = sigma_inv @ alphas
    for i in range(nport):
        block = np.zeros((nf + 1, nf + 1))
        for j in range(nf + 1):  # rows
            for k in range(1, nf + 1):  # cols
                block[j, k] = bct[i][j] * lam[k]
                if j == k:
                    block[j, k] -= at[i]
        jac[block1:block2, loc:loc + nf + 1] = block
        loc += nf + 1
    # 2, 2
    jac[block1:block2, block1:block2] = bc.T @ sigma_inv @ bc
    # 3,1
    block = np.zeros((nport, nport * (nf + 1)))
    row = col = 0
    for i in range(nport):
        for j in range(nf + 1):
            if j != 0:
                block[row, col] = lam[j]
            col += 1
        row += 1
    jac[-nport:, :(nport * (nf + 1))] = block
    # 3, 2
    jac[-nport:, (nport * (nf + 1)):(nport * (nf + 1)) + nf + 1] = bc
    # 3, 3: already done since eye
    mod_jac = mod._jacobian(bc, lam, alphas)
    assert_allclose(mod_jac[:block1], jac[:block1])
    assert_allclose(mod_jac[block1:block2, :block1],
                    jac[block1:block2, :block1])
    assert_allclose(mod_jac[block1:block2, block1:block2], jac[block1:block2,
                                                               block1:block2])
    assert_allclose(mod_jac[block1:block2, block2:], jac[block1:block2,
                                                         block2:])
    assert_allclose(mod_jac[block2:], jac[block2:])

    s = moments.T @ moments / (n - (nf + 1))
    ginv = np.linalg.inv(jac)
    cov = ginv @ s @ ginv.T / n
    order = np.zeros((nport, nf + 1), dtype=np.int64)
    order[:, 0] = np.arange(block2, block2 + nport)
    for i in range(nf):
        order[:, i + 1] = (nf + 1) * np.arange(nport) + (i + 1)
    order = np.r_[order.ravel(), block1:block2]
    cov = cov[order][:, order]
    cov = (cov + cov.T) / 2
    assert_allclose(cov, res.cov)

    acov = cov[:block1:(nf + 1), :block1:(nf + 1)]
    jstat = float(alphas.T @ np.linalg.pinv(acov) @ alphas)
    assert_allclose(res.cov.values[:block1:(nf + 1), :block1:(nf + 1)], acov)
    assert_allclose(res.j_statistic.stat, jstat, rtol=1e-1)
    assert_allclose(res.j_statistic.pval,
                    1 - stats.chi2(nport - nf - 1).cdf(jstat),
                    rtol=1e-2)

    get_all(res)
Example #6
0
def test_linear_model_parameters(data):
    mod = LinearFactorModel(data.portfolios, data.factors)
    res = mod.fit()
    f = mod.factors.ndarray
    p = mod.portfolios.ndarray
    n = f.shape[0]
    moments = np.zeros(
        (n, p.shape[1] * (f.shape[1] + 1) + f.shape[1] + p.shape[1]))
    fc = np.c_[np.ones((n, 1)), f]
    betas = lstsq(fc, p)[0]
    eps = p - fc @ betas
    loc = 0
    for i in range(eps.shape[1]):
        for j in range(fc.shape[1]):
            moments[:, loc] = eps[:, i] * fc[:, j]
            loc += 1
    b = betas[1:, :].T
    lam = lstsq(b, p.mean(0)[:, None])[0]
    pricing_errors = p - (b @ lam).T
    for i in range(lam.shape[0]):
        lam_error = (p - (b @ lam).T) @ b[:, [i]]
        moments[:, loc] = lam_error.squeeze()
        loc += 1
    alphas = pricing_errors.mean(0)[:, None]
    moments[:, loc:] = pricing_errors - alphas.T
    mod_moments = mod._moments(eps, b, lam, alphas, pricing_errors)

    assert_allclose(res.betas, b)
    assert_allclose(res.risk_premia, lam.squeeze())
    assert_allclose(res.alphas, alphas.squeeze())
    assert_allclose(moments, mod_moments)

    m = moments.shape[1]
    jac = np.eye(m)
    block1 = p.shape[1] * (f.shape[1] + 1)
    # 1,1

    jac[:block1, :block1] = np.kron(np.eye(p.shape[1]), fc.T @ fc / n)
    # 2, 1
    loc = 0
    nport, nf = p.shape[1], f.shape[1]
    block2 = block1 + nf
    for i in range(nport):
        block = np.zeros((nf, nf + 1))
        for j in range(nf):  # rows
            for k in range(1, nf + 1):  # cols
                block[j, k] = b[i][j] * lam[k - 1]
                if j + 1 == k:
                    block[j, k] -= alphas[i]
        jac[block1:block2, loc:loc + nf + 1] = block
        loc += nf + 1
    # 2, 2
    jac[block1:block2, block1:block2] = b.T @ b
    # 3,1
    block = np.zeros((nport, nport * (nf + 1)))
    row = col = 0
    for i in range(nport):
        for j in range(nf + 1):
            if j != 0:
                block[row, col] = lam[j - 1]
            col += 1
        row += 1
    jac[-nport:, :(nport * (nf + 1))] = block
    # 3, 2
    jac[-nport:, (nport * (nf + 1)):(nport * (nf + 1)) + nf] = b
    # 3, 3: already done since eye
    mod_jac = mod._jacobian(b, lam, alphas)
    assert_allclose(mod_jac[:block1], jac[:block1])
    assert_allclose(mod_jac[block1:block2, :block1],
                    jac[block1:block2, :block1])
    assert_allclose(mod_jac[block1:block2, block1:block2], jac[block1:block2,
                                                               block1:block2])
    assert_allclose(mod_jac[block1:block2, block2:], jac[block1:block2,
                                                         block2:])
    assert_allclose(mod_jac[block2:], jac[block2:])

    s = moments.T @ moments / (n - (nf + 1))
    ginv = np.linalg.inv(jac)
    cov = ginv @ s @ ginv.T / n
    order = np.zeros((nport, nf + 1), dtype=np.int64)
    order[:, 0] = np.arange(block2, block2 + nport)
    for i in range(nf):
        order[:, i + 1] = (nf + 1) * np.arange(nport) + (i + 1)
    order = np.r_[order.ravel(), block1:block2]
    cov = cov[order][:, order]
    cov = (cov + cov.T) / 2
    assert_allclose(cov, res.cov)

    acov = cov[:block1:(nf + 1), :block1:(nf + 1)]
    jstat = float(alphas.T @ np.linalg.pinv(acov) @ alphas)
    assert_allclose(res.j_statistic.stat, jstat)
    assert_allclose(res.j_statistic.pval,
                    1 - stats.chi2(nport - nf).cdf(jstat))

    get_all(res)

    res = LinearFactorModel(data.portfolios,
                            data.factors).fit(cov_type='kernel',
                                              debiased=False)
    std_mom = moments / moments.std(0)[None, :]
    mom = std_mom.sum(1)
    bw = kernel_optimal_bandwidth(mom)
    w = kernel_weight_bartlett(bw, n - 1)
    s = _cov_kernel(moments, w)
    cov = ginv @ s @ ginv.T / n
    cov = cov[order][:, order]
    cov = (cov + cov.T) / 2
    assert_allclose(cov, res.cov)
def test_infeasible(output):
    data = generate_data(nfactor=10, nportfolio=20, nobs=10, output=output)
    with pytest.raises(ValueError):
        LinearFactorModel(data.portfolios, data.factors)