def test_against_direct_model(data): keys = list(data.keys()) if not isinstance(data[keys[0]], Mapping): return if 'weights' in data[keys[0]]: return y = [] x = [] data_copy = OrderedDict() for i in range(min(3, len(data))): data_copy[keys[i]] = data[keys[i]] y.append(data[keys[i]]['dependent']) x.append(data[keys[i]]['exog']) direct = simple_sur(y, x) mod = SUR(data_copy) res = mod.fit(method='ols') assert_allclose(res.params.values[:, None], direct.beta0) res = mod.fit(method='gls') assert_allclose(res.params.values[:, None], direct.beta1)
def test_against_direct_model(data): keys = list(data.keys()) if not isinstance(data[keys[0]], Mapping): return if "weights" in data[keys[0]]: return y = [] x = [] data_copy = {} for i in range(min(3, len(data))): data_copy[keys[i]] = data[keys[i]] y.append(data[keys[i]]["dependent"]) x.append(data[keys[i]]["exog"]) direct = simple_sur(y, x) mod = SUR(data_copy) res = mod.fit(method="ols") assert_allclose(res.params.values[:, None], direct.beta0) res = mod.fit(method="gls") assert_allclose(res.params.values[:, None], direct.beta1)