Example #1
0
def main():

    print("\nAUTOMATED LITERATURE SEARCH\n")

    input('\n>> Press to see terms\n')

    terms_brain = [['theta oscillation'], ['beta oscillation']]
    terms_behav = [['memory'], ['motor']]

    print('BRAIN TERMS')
    for term in terms_brain:
        print('\t' + term[0])

    print('BEHAV TERMS')
    for term in terms_behav:
        print('\t' + term[0])

    input('\n>> Press to run scrape\n')

    # Initialize counts object
    counts = Count()
    counts.set_terms(terms_brain, 'A')
    counts.set_terms(terms_behav, 'B')
    counts.run_scrape(verbose=True)

    input('\n>> Press to see results\n')

    # Check the highest associations for each term
    counts.check_cooc('A')

    # Jump over to ERP-SCANR site
    input('\n>> Press to jump to project site\n')
    print("Opening ERP-SCANNER WebSite")
    webbrowser.get('Safari').open('http://tomdonoghue.github.io/ERP_SCANR/')
def test_scrape():
    """Test that Count object successful scrapes data."""

    counts = Count()

    # Add ERPs and terms
    counts.set_erps(['N400', 'P600'])
    counts.set_terms(['language', 'memory'])
    counts.set_exclusions(['protein', 'protein'])

    counts.scrape_data(db='pubmed')

    assert np.all(counts.dat_numbers)
    assert np.all(counts.dat_percent)

    check_funcs(counts)
Example #3
0
def main():
    """Run scrape of counts data."""

    counts = Count()

    if TEST:
        counts.set_terms([['language'], ['visual']])
    else:
        counts.terms['A'].set_terms_file(TERMS_FILE)

        # Reduce number of terms
        counts.terms['A'].terms = counts.terms['A'].terms[:40]
        counts.terms['A'].labels = counts.terms['A'].labels[:40]
        print('N terms:', len(counts.terms['A'].terms))

    print('\n\nSTARTING COUNTS SCRAPE')
    print('RUNNING TERMS TYPE: ', TERMS_FILE, '\n\n')

    counts.run_scrape(verbose=True)

    print('\n\nCOUNTS SCRAPE FINISHED\n\n')

    save_pickle_obj(counts, S_NAME)

    print('\n\nCOUNTS SCRAPE SAVED\n\n')
def test_save_pickle_obj():
    """Test the save_pickle_obj function."""

    tdb = TDB()

    count_obj = Count()
    words_obj = Words()

    save_pickle_obj(count_obj, 'test', db=tdb)
    save_pickle_obj(words_obj, 'test', db=tdb)

    assert True

    # Test error checking
    with raises(InconsistentDataError):
        save_pickle_obj(['bad dat'], 'test_bad', db=tdb)
Example #5
0
def test_scrape():
    """Test that Count object successful scrapes data."""

    counts = Count()

    counts.set_terms(['language', 'memory'])
    counts.set_exclusions(['protein', 'protein'])

    #counts.run_scrape(db='pubmed')
    # check_funcs(counts)
    # drop_data(counts)

    assert True
Example #6
0
def test_count():

    assert Count()
###################################################################################################
#
# Count Object
# ------------
#
# There is also an OOP interface available in LISC,
# to organize the terms and data, and run scrapes.
#
# Note that the underlying code is the same - the count object ultimately calls
# the same scrape function as above.

###################################################################################################

# Initialize counts object
counts = Count()

###################################################################################################

# Set terms to run
counts.set_terms(terms_a)

###################################################################################################

# Run scrape
counts.run_scrape(verbose=True)

###################################################################################################
#
#
# The Counts object also comes with some helper methods to check out the data.
def test_erpsc_count():
    """Test the Count object."""

    # Check that ERPSCCount returns properly
    assert Count()