(800, 28)\ ] TIMES = 100 SHORTCARD = 256 SPEED = 0.01 DROP_INPUT = 0.2 DROP_HIDDEN = 0.6 PRINT_FROM = 10 PRINT_TO = 50 STEP_SHOW = 3 RHO = 0.9 EPSILON = 1e-4 STEP = 50 print "test" trX, teX = load.loadMel("afterLDA100.db") # trY, teY = load.loadRes() trZ, teZ = load.loadLeter() print "loaded" neur = Neural() # neur.load_from_file(WEIGHTS_FILE) neur.init_model(ARR_SHAPE) neur.train(trX, teX, trZ, teZ, epochs=TIMES) neur.save_to_file(WEIGHTS_FILE) # trT = neur.result(trX) # teT = neur.result(teX) # print "start train" # neur2 = Neural()
import time startt = time.time() import numpy as np import ujson import load from sklearn.discriminant_analysis import LinearDiscriminantAnalysis print "test" DIM = 100 mel = load.loadMel()[0] res_class = load.loadClass()[0] print "loaded" # print res[0] # def myfunc(a): # print a # return a.tolist().index(1) def save_to_file(X, filename='afterLDA'): with open(filename + str(DIM) + ".db", 'w') as f: ujson.dump(X.tolist(), f) # vfunc = np.vectorize(myfunc) # res_class = vfunc(res) clf = LinearDiscriminantAnalysis(n_components=DIM) print "train" clf.fit(mel, res_class) print "trained" print clf.predict(mel[:10]) pred = clf.predict(mel) print res_class[:10]
import time startt = time.time() import numpy as np import ujson import load from sklearn.discriminant_analysis import LinearDiscriminantAnalysis print "test" DIM = 100 mel = load.loadMel()[0] res_class = load.loadClass()[0] print "loaded" # print res[0] # def myfunc(a): # print a # return a.tolist().index(1) def save_to_file(X, filename='afterLDA'): with open(filename + str(DIM) + ".db", 'w') as f: ujson.dump(X.tolist(), f) # vfunc = np.vectorize(myfunc) # res_class = vfunc(res) clf = LinearDiscriminantAnalysis(n_components=DIM) print "train" clf.fit(mel, res_class) print "trained" print clf.predict(mel[:10])