Example #1
0
    def train(self):

        log.infov("Training Starts!")
        output_save_step = 1000
        self.session.run(self.global_step.assign(0))  # reset global step

        if self.config.dataset == 'mnist':
            from load import load_mnist
            inputs, targets = load_mnist()
        else:
            raise NotImplementedError

        if self.config.method == 'kmeans':
            y_pred, _ = clustering(np.reshape(inputs, (len(inputs), -1)),
                                   self.config.num_clusters)
            metrics(targets, y_pred)
            return
        ''' pre-training '''
        if not self.config.skip_pretrain:
            self.pre_train_enc_dec(inputs,
                                   targets,
                                   batch_size=self.config.batch_size,
                                   num_epochs=1000)
            # save model
            self.save_curr_model(os.path.join(self.res_pretrain_dir, 'model'))
        else:
            self.try_load_checkpoint(self.res_pretrain_dir)

        # plot
        latent_z, _ = self.get_latent_rep_and_pred(inputs, targets)
        y_pred, centroids = clustering(latent_z, self.config.num_clusters)
        plot_latent_z_space(latent_z, y_pred, \
                    '%s/pre_train_z' % self.res_dir, with_legend=True)
        #sys.exit(0)

        if self.config.method == 'svgd':
            if not self.config.skip_svgd:
                self.session.run(self.model.mu.assign(centroids))
                #scale = np.zeros((self.config.num_clusters,  self.config.z_dim*(self.config.z_dim+1)//2))
                scale = np.zeros((self.config.num_clusters, self.config.z_dim))
                for c in range(self.config.num_clusters):
                    z_c = latent_z[np.where(y_pred == c)[0]]
                    s0 = np.std(z_c, axis=0)
                    scale[c] = s0
                self.session.run(self.model.scale_diag.assign(scale))

                self.train_svgd(inputs,
                                targets,
                                num_epochs=400,
                                batch_size=self.config.batch_size)
                self.save_curr_model(os.path.join(self.res_dir, 'model'))
            else:
                self.try_load_checkpoint(self.res_dir)

        # plot
        latent_z, y_pred = self.get_latent_rep_and_pred(inputs, targets)
        #y_pred, centroids = clustering(latent_z, self.config.num_clusters)
        plot_latent_z_space(latent_z, y_pred, \
                    '%s/%s_z' % (self.res_dir, self.config.method), with_legend=True)
Example #2
0
import numpy as np

from passage.models import RNN
from passage.updates import NAG, Regularizer
from passage.layers import Generic, GatedRecurrent, Dense
from passage.utils import load, save

from load import load_mnist

trX, teX, trY, teY = load_mnist()

#Use generic layer - RNN processes a size 28 vector at a time scanning from left to right 
layers = [
	Generic(size=28),
	GatedRecurrent(size=512, p_drop=0.2),
	Dense(size=10, activation='softmax', p_drop=0.5)
]

#A bit of l2 helps with generalization, higher momentum helps convergence
updater = NAG(momentum=0.95, regularizer=Regularizer(l2=1e-4))

#Linear iterator for real valued data, cce cost for softmax
model = RNN(layers=layers, updater=updater, iterator='linear', cost='cce')
model.fit(trX, trY, n_epochs=20)

tr_preds = model.predict(trX[:len(teY)])
te_preds = model.predict(teX)

tr_acc = np.mean(trY[:len(teY)] == np.argmax(tr_preds, axis=1))
te_acc = np.mean(teY == np.argmax(te_preds, axis=1))
Example #3
0
from __future__ import print_function, absolute_import
import cgt
from cgt import nn
from cgt.distributions import categorical
import numpy as np
from load import load_mnist
import time

epochs = 10
batch_size = 128

Xtrain, Xtest, ytrain, ytest = load_mnist(onehot=False)

# shuffle the data
np.random.seed(42)
sortinds = np.random.permutation(Xtrain.shape[0])
Xtrain = Xtrain[sortinds]
ytrain = ytrain[sortinds]

# reshape for convnet
Xtrainimg = Xtrain.reshape(-1, 1, 28, 28)
Xtestimg = Xtest.reshape(-1, 1, 28, 28)

# Model:
# Make it VGG-like
# VGG nets have 3x3 kernels with length 1 padding and max-pooling has all 2s.
#
# VGG is a large model so here well just do a small part of it.
X = cgt.tensor4('X', fixed_shape=(None, 1, 28, 28))
y = cgt.vector('y', dtype='i8')
def train(nlayers, num_epochs, rnn_dim, bsz, lr, twin):
    # use hugo's binarized MNIST
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)

    log_interval = 100
    folder_id = 'condmnist_twin_logs'
    model_id = 'condmnist_twin{}'.format(twin)
    log_file_name = os.path.join(folder_id, model_id + '.txt')
    model_file_name = os.path.join(folder_id, model_id + '.pt')
    log_file = open(log_file_name, 'w')

    # "home-made" binarized MNIST version. Use with fixed binarization
    # during training.
    def binarize(rng, x):
        return (x > rng.rand(x.shape[0], x.shape[1])).astype('int32')

    train_x, valid_x, test_x, train_y, valid_y, test_y = \
        load.load_mnist('./mnist/data')
    train_x = binarize(rng, train_x)
    valid_x = binarize(rng, valid_x)
    test_x = binarize(rng, test_x)

    model = Model(rnn_dim, nlayers)
    model.cuda()
    hidden = model.init_hidden(bsz)
    opt = torch.optim.Adam(model.parameters(), lr=lr)

    nbatches = train_x.shape[0] // bsz
    t = time.time()
    for epoch in range(num_epochs):
        step = 0
        old_valid_loss = np.inf
        b_fwd_loss, b_bwd_loss, b_twin_loss, b_all_loss = (0., 0., 0., 0.)
        model.train()

        print('Epoch {}: ({})'.format(epoch, model_id.upper()))
        for x, y in get_epoch_iterator(bsz, train_x, train_y):
            opt.zero_grad()
            # x = (0, x1, x2, x3, x4)
            # fwd_inp = (0, x1, x2, x3)
            # fwd_trg = (x1, x2, x3, x4)
            x_ = np.concatenate([np.zeros((1, bsz)).astype('int32'), x],
                                axis=0)
            fwd_x = torch.from_numpy(x_)
            fwd_inp = Variable(fwd_x[:-1]).long().cuda()
            fwd_trg = Variable(fwd_x[1:]).float().cuda()

            # reverse the contents
            # bwd_x = (0, x4, x3, x2, x1)
            # bwd_inp = (0, x4, x3, x2)
            # bwd_trg = (x4, x3, x2, x1)
            bwd_x = numpy.flip(x, 0).copy()
            x_ = np.concatenate([np.zeros((1, bsz)).astype('int32'), bwd_x],
                                axis=0)
            bwd_x = torch.from_numpy(x_)
            bwd_inp = Variable(bwd_x[:-1]).long().cuda()
            bwd_trg = Variable(bwd_x[1:]).float().cuda()

            y = Variable(torch.from_numpy(numpy.eye(10)[y])).float().cuda()

            # compute all the states for forward and backward
            fwd_out, fwd_vis = model(fwd_inp, y, hidden)
            assert fwd_out.size(0) == 784
            fwd_loss = binary_crossentropy(fwd_trg, fwd_out).mean()
            bwd_loss = binary_crossentropy(bwd_trg, bwd_out).mean()
            bwd_loss = bwd_loss * (twin > 0.)

            # reversing backstates
            fwd_vis = (out_x1, out_x2, out_x3, out_x4)
            bwd_vis_inv = (out_x1, out_x2, out_x3, out_x4)
            # therefore match: fwd_vis and bwd_vis_inv
            idx = np.arange(bwd_vis.size(0))[::-1].tolist()
            idx = torch.LongTensor(idx)
            idx = Variable(idx).cuda()
            bwd_vis_inv = bwd_vis.index_select(0, idx)
            bwd_vis_inv = bwd_vis_inv.detach()

            twin_loss = ((fwd_vis - bwd_vis_inv)**2).mean()
            twin_loss = twin_loss * twin
            all_loss = fwd_loss + bwd_loss + twin_loss

            all_loss.backward()

            torch.nn.utils.clip_grad_norm(model.parameters(), 1.)
            opt.step()

            b_fwd_loss += fwd_loss.data[0]
            b_bwd_loss += bwd_loss.data[0]
            b_twin_loss += twin_loss.data[0]
            b_all_loss += all_loss.data[0]

            if (step + 1) % log_interval == 0:
                s = time.time()
                log_line = 'Epoch [%d/%d], Step [%d/%d], loss: %f, %.2fit/s' % (
                    epoch, num_epochs, step + 1, nbatches,
                    b_fwd_loss / log_interval, log_interval / (s - t))
                b_all_loss = 0.
                b_fwd_loss = 0.
                b_bwd_loss = 0.
                b_twin_loss = 0.
                t = time.time()
                print(log_line)

                print(time.time(), time.clock())
                log_file.write(log_line + '\n')

            step += 1

        # evaluate per epoch
        print('--- Epoch finished ----')
        val_loss = evaluate(model, bsz, valid_x, valid_y)
        log_line = 'valid -- nll: %f' % (val_loss)
        print(log_line)
        log_file.write(log_line + '\n')
        test_loss = evaluate(model, bsz, test_x, test_y)
        log_line = 'test -- nll: %f' % (test_loss)
        print(log_line)
        log_file.write(log_line + '\n')

        if old_valid_loss > val_loss:
            old_valid_loss = val_loss
            torch.save(model.state_dict(), model_file_name)
        else:
            for param_group in opt.param_groups:
                lr = param_group['lr']
                if lr > 0.00005:
                    lr *= 0.5
                param_group['lr'] = lr
Example #5
0
        #print self.G.shape, self.Y.shape
        h = dual(self.G, self.Y, self.a, self.b, i)
        if h < 0:
            return self.i
        else:
            return self.j
       
 
if __name__=="__main__":
    # Argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('-m', help='ECOC or VOTE')
    args = parser.parse_args(sys.argv[1:])

    # Load data using specialized script
    train_dataset = load_mnist(path="../data/mnist/", dataset="training")
    test_dataset = load_mnist(path="../data/mnist/", dataset="testing")
    
    # Take a fraction of the data to speed computation
    train_images, train_labels = sample(train_dataset, 5000)
    test_images, test_labels = sample(test_dataset, 100)

    # Get the bounds of the haar rectangles
    bounds = genbounds(28, 28, 100)
    
    # Create data, using same rectangles for training and testing
    train_data = genfeatures(train_images, bounds).astype(float)
    test_data = genfeatures(test_images, bounds).astype(float)

    # Normalize the data
    zmscaler = preprocessing.StandardScaler()
Example #6
0
            self.trainer.scheduler_updates()

    def predict(self, X):
        """
        Currently clips the last few rows of X
        and requires a minimum of batch_size * n_batches examples
        """
        predictions = []
        for batch in self.iter_data(X):
            predictions.append(self.fprop(batch))

        return np.vstack(predictions)

if __name__ == "__main__":
    data_dir = '/home/mmay/data/mnist'
    trX, _, teX, _ = load_mnist(data_dir)

    augmenter = SaltAndPepper(low=0.,high=1.,p_corrupt=0.5)

    bce = T.nnet.binary_crossentropy
    # Factor out trainer
    # Generalize to multiple layers
    n_vis=784
    n_hidden=2000
    batch_size = 128
    activation = T.nnet.sigmoid
    layers = [
        InputLayer(n_vis,batch_size=batch_size,augmenter=augmenter),
        HiddenLayer(n_hidden, activation),
        HiddenLayer(n_vis, activation)
    ]
Example #7
0
from scipy.misc import imresize, imsave
import pickle

MIN = 2
MAX = 4
#size of frame
SIZE = 64
#border
BORDER = 2
#downsample
ISIZE = 20
#n. of digits
ND = 2
MNIST_SAMPLES = 60000
DATA_PATH = "./mnist/data"
train_x, valid_x, test_x, train_y, valid_y, test_y = load.load_mnist(DATA_PATH)


def create_rand_multi_mnist(data, labels, samples=60000):
    """ Create a dataset where multiple (MIN to MAX) random MNIST digits are randomly located in a long image. """
    new_images = []
    new_labels = []
    img_by_labels = {}
    for i, (x, l) in enumerate(zip(data, labels)):
        img_by_labels[l] = img_by_labels.get(l, []) + [i]
    while len(new_images) != samples:
        if len(new_images) % 1000 == 0:
            print('done {}'.format(len(new_images)))
        pos = []
        mask = np.zeros((SIZE, SIZE))
        while len(pos) != ND:
Example #8
0
import load
X_train, y_train = load.load_mnist('mnist/', kind='train')
print('Rows: %d, columns: %d' % (X_train.shape[0], X_train.shape[1]))

X_test, y_test = load.load_mnist('mnist/', kind='t10k')
print('Rows: %d, columns: %d' % (X_test.shape[0], X_test.shape[1]))
Example #9
0
import numpy as np
import matplotlib.pyplot as plt
from numpy import log as ln
import random
from numpy import random
import math
from matplotlib.pyplot import plot,savefig
from PIL import Image
import load
#Import MNIST dataset
mnist=np.array(load.load_mnist(one_hot=True))
train_data = mnist[0][0][0:10000].T
train_label = mnist[0][1][0:10000].T
test_data = mnist[1][0][0:10000].T
test_label = mnist[1][1][0:10000].T
print(np.shape(train_data))
print(np.shape(train_label))
#Import Cifar dataset
from PIL import Image
import os
import pickle
def load_CIFAR_batch(filename):
    with open(filename, 'rb') as f:
        datadict = pickle.load(f,encoding='latin1')
        X = datadict['data']
        Y = datadict['labels']
        X = X.reshape(10000, 3, 32,32).transpose(0,2,3,1).astype("float")
        Y = np.array(Y)
        return X, Y
def load_CIFAR10(ROOT):
Example #10
0
File: main.py Project: x0rb0t/FRU
def train(params):

    # fix random seed
    np.random.seed(params.random_seed)

    print('%s starting......' % params.cell)

    if params.dataset.startswith('mnist'):
        train_X, test_X, train_y, test_y = load.load_mnist(params)
    elif params.dataset.startswith(
            'sine_synthetic'
    ) and not params.dataset.startswith('sine_synthetic_out'):
        train_X, test_X, train_y, test_y = load.load_sine_synthetic(params)
    elif params.dataset.startswith('poly_synthetic'):
        train_X, test_X, train_y, test_y = load.load_poly_synthetic(params)
    else:
        assert 0, "unknown dataset %s" % (params.dataset)

    #params.freqs = np.logspace(np.log2(0.25), np.log2(params.time_steps/3), 120-1, base=2).tolist()
    #params.freqs.append(0.0)
    #params.freqs.sort()
    #params.freqs = np.linspace(0, params.time_steps/3, 10).tolist()
    print "parameters = ", params

    model = rnn.RNNModel(params)

    # load model
    if params.load_model:
        model.load("%s.%s" % (params.model_dir, params.cell))

    # train model
    train_error, test_error = model.train(params, train_X, train_y, test_X,
                                          test_y)

    # save model
    if params.model_dir:
        if os.path.isdir(os.path.dirname(params.model_dir)) == False:
            os.makedirs(params.model_dir)
        model.save("%s.%s" % (params.model_dir, params.cell))

    # predict
    train_pred = model.predict(train_X, params.batch_size)
    test_pred = model.predict(test_X, params.batch_size)

    # must close model when finish
    model.close()

    # write prediction to file
    if params.pred_dir:
        if os.path.isdir(os.path.dirname(params.pred_dir)) == False:
            os.makedirs(params.pred_dir)
        with open(
                "%s.%s.%s.y" % (params.pred_dir, params.dataset, params.cell),
                "w") as f:
            content = ""
            for pred in [train_pred, test_pred]:
                for entry in pred:
                    for index, value in enumerate(entry):
                        if index:
                            content += ","
                        content += "%f" % (value)
                    content += "\n"
            f.write(content)
        with open(
                "%s.%s.%s.X" % (params.pred_dir, params.dataset, params.cell),
                "w") as f:
            content = ""
            for X in [train_X, test_X]:
                for entry in X:
                    for index, value in enumerate(entry.ravel()):
                        if index:
                            content += ","
                        content += "%f" % (value)
                    content += "\n"
            f.write(content)

    return train_error, test_error
Example #11
0
def train(params):

    print('%s starting......' % params.cell)
    sys.stdout.flush()

    if params.dataset.startswith('mnist'):
        train_X, test_X, train_y, test_y = load.load_mnist(params)
    elif params.dataset.startswith('add'):
        train_X, test_X, train_y, test_y = load.adding_task(params)
    else:
        assert 0, "unknown dataset %s" % (params.dataset)

    print ("parameters = ", params)

    class List:
        def __init__(self):
            self.list = list()

        def append(self, item):
            self.list.append(item)

    model = rnn.RNNModel(params)

    # load model
    if params.load_model:
        model.load("%s" % (params.load_model_dir))

    # train model
    train_error, test_error,epochs = model.train(params, train_X, train_y, test_X, test_y)
    
    #save data to file(Egor)
    
    with open('data_'+params.cell+'_dataset_'+params.dataset+'_L_'+str(params.num_layers)+'_rsize_'+str(params.r_size) + '_lr_decay_' + str(params.lr_decay) + '_batch_size_' + str(params.batch_size),'w') as file:
        for i in range(len(train_error)):
            file.write(str(epochs[i])+' '+str(train_error[i])+' '+str(test_error[i])+'\n')
    
    
    # save model
    
    if params.model_dir:
        if os.path.isdir(os.path.dirname(params.model_dir)) == False:
            os.makedirs(params.model_dir)
        model.save("%s.%s" % (params.model_dir, params.cell))

    # predict
    train_pred = model.predict(train_X, params.batch_size)
    test_pred = model.predict(test_X, params.batch_size)

    # must close model when finish
    model.close()

    # write prediction to file
    if params.pred_dir:
        if os.path.isdir(os.path.dirname(params.pred_dir)) == False:
            os.makedirs(params.pred_dir)
        with open("%s.%s.%s.y" % (params.pred_dir, params.dataset, params.cell), "w") as f:
            content = ""
            for pred in [train_pred, test_pred]:
                for entry in pred:
                    for index, value in enumerate(entry):
                        if index:
                            content += ","
                        content += "%f" % (value)
                    content += "\n"
            f.write(content)
        with open("%s.%s.%s.X" % (params.pred_dir, params.dataset, params.cell), "w") as f:
            content = ""
            for X in [train_X, test_X]:
                for entry in X:
                    for index, value in enumerate(entry.ravel()):
                        if index:
                            content += ","
                        content += "%f" % (value)
                    content += "\n"
            f.write(content)
    return train_error, test_error