print(network.snapshots) #temporary load scaling factor for Germany load in relation to ENTSO-E hourly load #based roughly on Schumacher & Hirth (2015) #http://www.feem.it/userfiles/attach/20151191122284NDL2015-088.pdf #In principle rescaling should happen on a monthly basis load_factor = 1.12 for bus in graph.nodes(): network.add("Load",bus,bus=bus, p_set = pd.Series(data=load_factor*1000*load.loc[network.snapshots,bus],index=network.snapshots)) #%matplotlib inline pd.DataFrame(load.sum(axis=1)).plot() load_distribution = network.loads_t.p_set.loc[network.snapshots[0]].groupby(network.loads.bus).sum() network.plot(bus_sizes=load_distribution) total_load = load.sum(axis=1) monthly_load = total_load.resample("M").sum() monthly_load.plot(grid=True) ## Attach conventional generators from BNetzA list from vresutils import shapes as vshapes
#http://www.feem.it/userfiles/attach/20151191122284NDL2015-088.pdf #In principle rescaling should happen on a monthly basis load_factor = 1.12 for bus in graph.nodes(): network.add("Load", bus, bus=bus, p_set=pd.Series(data=load_factor * 1000 * load.loc[network.snapshots, bus], index=network.snapshots)) #%matplotlib inline pd.DataFrame(load.sum(axis=1)).plot() load_distribution = network.loads_t.p_set.loc[network.snapshots[0]].groupby( network.loads.bus).sum() network.plot(bus_sizes=load_distribution) total_load = load.sum(axis=1) monthly_load = total_load.resample("M").sum() monthly_load.plot(grid=True) ## Attach conventional generators from BNetzA list from vresutils import shapes as vshapes