help='Train/Restore Attribute') parser.add_argument('--TC', type=int, default=0, help='Train/Restore Classify') parser.add_argument('--PRE', type=int, default=5, help='1.CNN, 2.Model, 3.Classify') globalV.FLAGS, _ = parser.parse_known_args() print('\nLoad Data for {0}'.format(globalV.FLAGS.KEY)) (trainClass, trainAtt, trainVec, trainX, trainY, trainYAtt), (valClass, valAtt, valVec, valX, valY, valYAtt), (testClass, testAtt, testVec, testX, testY, testYAtt) = loadData.getData() if globalV.FLAGS.KEY == 'SUN' or globalV.FLAGS.KEY == 'APY': print(' {0:>10} {1:>12} {2:>10} {3:>20} {4:>10} {5:>12}'.format( 'numClass', 'classAtt', 'classVec', 'inputX', 'outputY', 'outputAtt')) print('Train: {0:>10} {1:>12} {2:>10} {3:>20} {4:>10} {5:>12}'.format( len(trainClass), str(trainAtt.shape), str(trainVec.shape), str(trainX.shape), str(trainY.shape), str(trainYAtt.shape))) print('Valid: {0:>10} {1:>12} {2:>10} {3:>20} {4:>10} {5:>12}'.format( len(valClass), str(valAtt.shape), str(valVec.shape), str(valX.shape), str(valY.shape), str(valYAtt.shape))) print('Test: {0:>10} {1:>12} {2:>10} {3:>20} {4:>10} {5:>12}'.format( len(testClass), str(testAtt.shape), str(testVec.shape), str(testX.shape), str(testY.shape), str(testYAtt.shape))) else: print(' {0:>10} {1:>12} {2:>10} {3:>20} {4:>10}'.format(
parser.add_argument('--KEY', type=str, default='APY',help='Choose dataset (AWA2, CUB, SUN, APY)') parser.add_argument('--maxSteps', type=int, default=1, help='Number of steps to run trainer.') parser.add_argument('--lr', type=float, default=1e-4, help='Initial learning rate') parser.add_argument('--width', type=int, default=300, help='Width') parser.add_argument('--height', type=int, default=300, help='Height') parser.add_argument('--numClass', type=int, default=32, help='Number of class') parser.add_argument('--numAtt', type=int, default=640, help='Dimension of Attribute') parser.add_argument('--batchSize', type=int, default=32, help='Number of batch size') parser.add_argument('--TD', type=int, default=0, help='Train/Restore Darknet') parser.add_argument('--TA', type=int, default=0, help='Train/Restore Attribute') parser.add_argument('--TC', type=int, default=0, help='Train/Restore Classify') parser.add_argument('--PRE', type=int, default=4, help='1.CNN, 2.Model, 3.Classify') globalV.FLAGS, _ = parser.parse_known_args() print('\nLoad Data for {0}'.format(globalV.FLAGS.KEY)) (trainClass, trainAtt, trainVec, trainX, trainY, trainYAtt), (valClass, valAtt, valVec, valX, valY, valYAtt), (testClass, testAtt, testVec, testX, testY, testYAtt) = loadData.getData() if globalV.FLAGS.KEY == 'SUN' or globalV.FLAGS.KEY == 'APY': print(' {0:>10} {1:>12} {2:>10} {3:>20} {4:>10} {5:>12}'.format('numClass', 'classAtt', 'classVec','inputX', 'outputY', 'outputAtt')) print('Train: {0:>10} {1:>12} {2:>10} {3:>20} {4:>10} {5:>12}'.format(len(trainClass), str(trainAtt.shape), str(trainVec.shape), str(trainX.shape), str(trainY.shape), str(trainYAtt.shape))) print('Valid: {0:>10} {1:>12} {2:>10} {3:>20} {4:>10} {5:>12}'.format(len(valClass), str(valAtt.shape), str(valVec.shape), str(valX.shape), str(valY.shape), str(valYAtt.shape))) print('Test: {0:>10} {1:>12} {2:>10} {3:>20} {4:>10} {5:>12}'.format(len(testClass), str(testAtt.shape), str(testVec.shape), str(testX.shape), str(testY.shape), str(testYAtt.shape))) else: print(' {0:>10} {1:>12} {2:>10} {3:>20} {4:>10}'.format('numClass', 'classAtt', 'classVec','inputX', 'outputY')) print('Train: {0:>10} {1:>12} {2:>10} {3:>20} {4:>10}'.format(len(trainClass), str(trainAtt.shape), str(trainVec.shape), str(trainX.shape), str(trainY.shape))) print('Valid: {0:>10} {1:>12} {2:>10} {3:>20} {4:>10}'.format(len(valClass), str(valAtt.shape), str(valVec.shape), str(valX.shape), str(valY.shape))) print('Test: {0:>10} {1:>12} {2:>10} {3:>20} {4:>10}'.format(len(testClass), str(testAtt.shape), str(testVec.shape), str(testX.shape), str(testY.shape))) # Index with total classes def printClassName(pos): if pos < len(trainClass): return trainClass[pos]