Example #1
0
def main(opts):
    hvd.init()
    n_gpu = hvd.size()
    device = torch.device("cuda", hvd.local_rank())
    torch.cuda.set_device(hvd.local_rank())
    opts.n_gpu = n_gpu
    LOGGER.info("device: {} n_gpu: {}, rank: {}, "
                "16-bits training: {}".format(device, n_gpu, hvd.rank(),
                                              opts.fp16))

    if hvd.rank() != 0:
        LOGGER.disabled = True
    set_random_seed(opts.seed)

    # train_examples = None
    LOGGER.info(f"Loading the whole video dataset {opts.sub_txt_db}, "
                f"{opts.vfeat_db}")
    if opts.task != "didemo_video_only":
        video_db = load_video_sub_dataset(opts.vfeat_db, opts.sub_txt_db,
                                          opts.vfeat_interval, opts)
    else:
        txt_meta = load_json(join(opts.train_query_txt_db, "meta.json"))
        video_db = load_video_only_dataset(opts.vfeat_db, txt_meta,
                                           opts.vfeat_interval, opts)

    # data loaders
    # train
    video_ids = get_video_ids(opts.train_query_txt_db)
    train_q_txt_db = QueryTokLmdb(opts.train_query_txt_db, opts.max_txt_len)
    train_dataloaders = build_downstream_dataloaders([opts.task],
                                                     video_db,
                                                     video_ids,
                                                     True,
                                                     opts,
                                                     shuffle=True,
                                                     q_txt_db=train_q_txt_db)
    meta_loader = MetaLoader(train_dataloaders,
                             accum_steps=opts.gradient_accumulation_steps,
                             distributed=n_gpu > 1)
    meta_loader = PrefetchLoader(meta_loader)

    # val
    video_ids = get_video_ids(opts.val_query_txt_db)
    val_q_txt_db = QueryTokLmdb(opts.val_query_txt_db, -1)
    val_dataloaders = build_downstream_dataloaders([opts.task],
                                                   video_db,
                                                   video_ids,
                                                   False,
                                                   opts,
                                                   q_txt_db=val_q_txt_db)

    if opts.task != "didemo_video_only":
        inf_dataset = VcmrFullEvalDataset
    else:
        inf_dataset = VcmrVideoOnlyFullEvalDataset
    LOGGER.info(f"Loading Inference Dataset {opts.val_query_txt_db} (val)")
    val_dset = inf_dataset(video_ids,
                           video_db,
                           val_q_txt_db,
                           distributed=opts.distributed_eval)
    inf_loader_val = DataLoader(val_dset,
                                batch_size=opts.vcmr_eval_q_batch_size,
                                num_workers=opts.n_workers,
                                pin_memory=opts.pin_mem,
                                collate_fn=vcmr_full_eval_collate)
    inf_loader_val = PrefetchLoader(inf_loader_val)
    if opts.test_query_txt_db:
        LOGGER.info(
            f"Loading Inference Dataset {opts.test_query_txt_db} (test)")
        video_ids = get_video_ids(opts.test_query_txt_db)
        test_q_txt_db = QueryTokLmdb(opts.test_query_txt_db, -1)
        test_dset = inf_dataset(video_ids,
                                video_db,
                                test_q_txt_db,
                                distributed=opts.distributed_eval)
        inf_loader_test = DataLoader(test_dset,
                                     batch_size=opts.vcmr_eval_q_batch_size,
                                     num_workers=opts.n_workers,
                                     pin_memory=opts.pin_mem,
                                     collate_fn=vcmr_full_eval_collate)
        inf_loader_test = PrefetchLoader(inf_loader_test)

    # Prepare model
    if opts.checkpoint:
        checkpoint = torch.load(opts.checkpoint)
    else:
        checkpoint = {}
    img_pos_embed_weight_key = "v_encoder.f_encoder.img_embeddings" +\
        ".position_embeddings.weight"
    if img_pos_embed_weight_key in checkpoint:
        max_frm_seq_len = len(checkpoint[img_pos_embed_weight_key])
    else:
        max_frm_seq_len = MAX_FRM_SEQ_LEN

    model = HeroForVcmr.from_pretrained(
        opts.model_config,
        state_dict=checkpoint,
        vfeat_dim=VFEAT_DIM,
        max_frm_seq_len=max_frm_seq_len,
        lw_neg_ctx=opts.lw_neg_ctx,
        lw_neg_q=opts.lw_neg_q,
        lw_st_ed=0,
        ranking_loss_type=opts.ranking_loss_type,
        use_hard_negative=False,
        hard_pool_size=opts.hard_pool_size,
        margin=opts.margin,
        use_all_neg=opts.use_all_neg,
        drop_svmr_prob=opts.drop_svmr_prob)

    model.to(device)
    # make sure every process has same model parameters in the beginning
    broadcast_tensors([p.data for p in model.parameters()], 0)
    set_dropout(model, opts.dropout)

    # Prepare optimizer
    optimizer = build_optimizer(model, opts)
    task2scaler = {t: i for i, t in enumerate(train_dataloaders.keys())}
    model, optimizer = amp.initialize(model,
                                      optimizer,
                                      num_losses=len(task2scaler),
                                      enabled=opts.fp16,
                                      opt_level='O2')
    restorer = TrainingRestorer(opts, model, optimizer)
    global_step = restorer.global_step
    TB_LOGGER.global_step = global_step
    if hvd.rank() == 0:
        save_training_meta(opts)
        TB_LOGGER.create(join(opts.output_dir, 'log'))
        pbar = tqdm(total=opts.num_train_steps)
        model_saver = ModelSaver(join(opts.output_dir, 'ckpt'))
        if not exists(join(opts.output_dir, 'results')):
            # store tvr predictions
            os.makedirs(join(opts.output_dir, 'results'))
        if opts.nms_thd != -1:
            # store tvr-nms predictions
            if not exists(join(opts.output_dir, 'results_nms')):
                os.makedirs(join(opts.output_dir, 'results_nms'))
        add_log_to_file(join(opts.output_dir, 'log', 'log.txt'))
    else:
        pbar = NoOp()
        model_saver = NoOp()
        restorer = NoOp()

    if global_step > 0:
        pbar.update(global_step)
    LOGGER.info(f"***** Running training with {n_gpu} GPUs *****")
    LOGGER.info("  Batch size = %d", opts.train_batch_size)
    LOGGER.info("  Accumulate steps = %d", opts.gradient_accumulation_steps)
    LOGGER.info("  Num steps = %d", opts.num_train_steps)

    task2loss = {
        task: RunningMeter(f'loss/{task}')
        for task in train_dataloaders.keys()
    }

    for obj in (f'{opts.task}_st_ed', f'{opts.task}_neg_ctx',
                f'{opts.task}_neg_q'):
        task2loss[obj] = RunningMeter(f'loss/{obj}')
    model.train()
    n_examples = defaultdict(int)
    start = time()
    # quick hack for amp delay_unscale bug
    optimizer.zero_grad()
    if global_step == 0:
        optimizer.step()
    for step, (task, batch) in enumerate(meta_loader):
        if len(opts.hard_negtiave_start_step) > 0:
            for i, hn_step in enumerate(opts.hard_negtiave_start_step):
                if global_step >= hn_step and hn_step != -1:
                    model.set_hard_negative(True, opts.hard_pool_size[i],
                                            opts.hard_neg_weights[i])
        if opts.train_span_start_step != -1 and\
                global_step >= opts.train_span_start_step:
            model.set_train_st_ed(opts.lw_st_ed)

        n_examples[task] += opts.train_batch_size

        loss = model(batch, task=task, compute_loss=True)

        loss_st_ed, loss_neg_ctx, loss_neg_q = loss
        loss = loss_st_ed + loss_neg_ctx + loss_neg_q
        for n, ls, w in (('st_ed', loss_st_ed, opts.lw_st_ed),
                         ('neg_ctx', loss_neg_ctx, opts.lw_neg_ctx),
                         ('neg_q', loss_neg_q, opts.lw_neg_q)):
            ls = ls.item()
            if w:
                ls /= w
            task2loss[f'{task}_{n}'](ls)

        loss = loss.mean()
        task2loss[task](loss.item())

        delay_unscale = (step + 1) % opts.gradient_accumulation_steps != 0
        with amp.scale_loss(loss,
                            optimizer,
                            delay_unscale=delay_unscale,
                            loss_id=task2scaler[task]) as scaled_loss:
            scaled_loss.backward()
            if not delay_unscale:
                # gather gradients from every processes
                # do this before unscaling to make sure every process uses
                # the same gradient scale
                grads = [
                    p.grad.data for p in model.parameters()
                    if p.requires_grad and p.grad is not None
                ]
                all_reduce_and_rescale_tensors(grads, float(1))

        if (step + 1) % opts.gradient_accumulation_steps == 0:
            global_step += 1

            # learning rate scheduling
            lr_this_step = get_lr_sched(global_step, opts)
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr_this_step
            TB_LOGGER.add_scalar('lr', lr_this_step, global_step)

            # log loss
            TB_LOGGER.log_scaler_dict({
                temp_loss.name: temp_loss.val
                for temp_loss in task2loss.values()
                if temp_loss.val is not None
            })
            TB_LOGGER.step()

            # update model params
            if opts.grad_norm != -1:
                grad_norm = clip_grad_norm_(amp.master_params(optimizer),
                                            opts.grad_norm)
                TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step)
            optimizer.step()
            optimizer.zero_grad()
            pbar.update(1)

            if global_step % 100 == 0:
                # monitor training throughput
                LOGGER.info('-------------------------------------------')
                LOGGER.info(f'Step {global_step}:')
                for t in train_dataloaders.keys():
                    tot_ex = sum(all_gather_list(n_examples[t]))
                    ex_per_sec = int(tot_ex / (time() - start))
                    LOGGER.info(f'{t}: {tot_ex} examples trained at '
                                f'{ex_per_sec} ex/s')
                    TB_LOGGER.add_scalar(f'perf/{t}_ex_per_s', ex_per_sec,
                                         global_step)

            if global_step % opts.valid_steps == 0:
                LOGGER.info('===========================================')
                LOGGER.info(f"Step {global_step}: start running validation")
                validate(model, val_dataloaders, opts)
                if hvd.rank() == 0 or opts.distributed_eval:
                    log, results = validate_full_vcmr(model,
                                                      inf_loader_val,
                                                      'val',
                                                      opts,
                                                      model_opts=opts)
                    save_json(
                        results, f'{opts.output_dir}/results/'
                        f'val_results_{global_step}_rank{hvd.rank()}.json')
                    TB_LOGGER.log_scaler_dict(log)
                    if opts.test_query_txt_db:
                        log, results = validate_full_vcmr(model,
                                                          inf_loader_test,
                                                          'test',
                                                          opts,
                                                          model_opts=opts)
                        save_json(
                            results, f'{opts.output_dir}/results/'
                            f'test_results_{global_step}_rank{hvd.rank()}.json'
                        )
                        TB_LOGGER.log_scaler_dict(log)
                LOGGER.info('===========================================')
                model_saver.save(model, global_step)

            # step restorer in the end to prevent missing validation checkpoint
            restorer.step()
        if global_step >= opts.num_train_steps:
            break

    LOGGER.info('===========================================')
    if global_step % opts.valid_steps != 0:
        if hvd.rank() == 0 or opts.distributed_eval:
            log, results = validate_full_vcmr(model,
                                              inf_loader_val,
                                              'val',
                                              opts,
                                              model_opts=opts)
            save_json(
                results, f'{opts.output_dir}/results/'
                f'val_results_{global_step}'
                f'_rank{hvd.rank()}_final.json')
            TB_LOGGER.log_scaler_dict(log)
            if opts.test_query_txt_db:
                log, results = validate_full_vcmr(model,
                                                  inf_loader_test,
                                                  'test',
                                                  opts,
                                                  model_opts=opts)
                save_json(
                    results, f'{opts.output_dir}/results/'
                    f'test_results_{global_step}_rank{hvd.rank()}.json')
                TB_LOGGER.log_scaler_dict(log)
    model_saver.save(model, f'{global_step}_final')
Example #2
0
def main(opts):
    hvd.init()
    n_gpu = hvd.size()
    device = torch.device("cuda", hvd.local_rank())
    torch.cuda.set_device(hvd.local_rank())
    rank = hvd.rank()
    LOGGER.info("device: {} n_gpu: {}, rank: {}, 16-bits training: {}".format(device, n_gpu, hvd.rank(), opts.fp16))
    if hvd.rank() != 0:
        LOGGER.disabled = True
    hps_file = f'{opts.output_dir}/log/hps.json'
    model_opts = Struct(load_json(hps_file))
    model_config = f'{opts.output_dir}/log/model_config.json'

    # load DBs and image dirs
    video_ids = get_video_ids(opts.query_txt_db)
    if opts.task != "didemo_video_only":
        video_db = load_video_sub_dataset(opts.vfeat_db, opts.sub_txt_db, model_opts.vfeat_interval, model_opts)
    else:
        txt_meta = load_json(os.path.join(opts.query_txt_db, "meta.json"))
        video_db = load_video_only_dataset(opts.vfeat_db, txt_meta, model_opts.vfeat_interval, model_opts)
    assert opts.split in opts.query_txt_db
    q_txt_db = QueryTokLmdb(opts.query_txt_db, -1)
    if opts.task != "didemo_video_only":
        inf_dataset = VcmrFullEvalDataset
    else:
        inf_dataset = VcmrVideoOnlyFullEvalDataset

    eval_dataset = inf_dataset(video_ids, video_db, q_txt_db, distributed=model_opts.distributed_eval)

    # Prepare model
    if exists(opts.checkpoint):
        ckpt_file = opts.checkpoint
    else:
        ckpt_file = f'{opts.output_dir}/ckpt/model_step_{opts.checkpoint}.pt'
    checkpoint = torch.load(ckpt_file)
    img_pos_embed_weight_key = ("v_encoder.f_encoder.img_embeddings.position_embeddings.weight")
    assert img_pos_embed_weight_key in checkpoint
    max_frm_seq_len = len(checkpoint[img_pos_embed_weight_key])

    model = HeroForVcmr.from_pretrained(
        model_config,
        state_dict=checkpoint,
        vfeat_dim=VFEAT_DIM,
        max_frm_seq_len=max_frm_seq_len,
        lw_neg_ctx=model_opts.lw_neg_ctx,
        lw_neg_q=model_opts.lw_neg_q, lw_st_ed=0,
        ranking_loss_type=model_opts.ranking_loss_type,
        use_hard_negative=False,
        hard_pool_size=model_opts.hard_pool_size,
        margin=model_opts.margin,
        use_all_neg=model_opts.use_all_neg,
        drop_svmr_prob=model_opts.drop_svmr_prob)
    model.to(device)
    if opts.fp16:
        model = amp.initialize(model, enabled=opts.fp16, opt_level='O2')

    eval_dataloader = DataLoader(eval_dataset, batch_size=opts.batch_size,
                                 num_workers=opts.n_workers,
                                 pin_memory=opts.pin_mem,
                                 collate_fn=vcmr_full_eval_collate)
    eval_dataloader = PrefetchLoader(eval_dataloader)

    _, results = validate_full_vcmr(model, eval_dataloader, opts.split, opts, model_opts)
    result_dir = f'{opts.output_dir}/results_{opts.split}'

    if not exists(result_dir) and rank == 0:
        os.makedirs(result_dir)

    all_results_list = all_gather_list(results)

    if hvd.rank() == 0:  # save for only one time
        all_results = {"video2idx": all_results_list[0]["video2idx"]}
        for rank_id in range(hvd.size()):
            for key, val in all_results_list[rank_id].items():
                if key == "video2idx":
                    continue
                if key not in all_results:
                    all_results[key] = []
                all_results[key].extend(all_results_list[rank_id][key])
        LOGGER.info('All results joined......')

        # save_vr(all_results, f'{result_dir}/results_{opts.checkpoint}_{opts.split}_vr.json')
        # save_vcmr_base_on_vr(all_results, f'{result_dir}/results_{opts.checkpoint}_{opts.split}_vcmr_base_on_vr.json')
        save_vcmr(all_results, f'{result_dir}/results_{opts.checkpoint}_{opts.split}_vcmr.json')