def __init__(self): load_data.main() #connection from the data connection_string = "host= 'localhost' dbname='resort' user='******' password='******'" self.conn = psycopg2.connect(connection_string,cursor_factory=psycopg2.extras.DictCursor ) #main function: self.loc_x = -1 self.loc_y = -1
def load(database): ld = input("Do you want to load existing csv to %s database ?:" % database) load_csv = ld.upper() if load_csv == 'YES' or load_csv == 'Y': load_csv = load_data.main() print("CSV Loaded sucessfully") log.info("CSV Loaded sucessfully") else: print("Not loading csv to database") log.info("Not loading csv to database")
def main(): #parse arguments args = parse_args.parse_with_resolved_paths() args = dir_utils.resolve_run_directory(args) import pdb pdb.set_trace() #create/load data data = load_data.main(args) #train model/load model model = train.main(data, args) #evaluate model evaluate.main(data, model, args)
def realnfake(image, image_size, epochs): dataloader = load_data.main((image_size)) real = next(iter(dataloader)) plt.figure(figsize=(64, 64)) plt.subplot(1, 2, 1) plt.axis("off") plt.title("Real Images", fontsize=100) plt.imshow(np.transpose(vutils.make_grid(real[0].to(device)[ :64], padding=5, normalize=True).cpu(), (1, 2, 0))) img = vutils.make_grid(image[0:64], padding=2, normalize=True) img = img.detach().numpy() plt.subplot(1, 2, 2) plt.title("Fake Images", fontsize=100) plt.axis("off") plt.imshow(np.transpose(img[:64], (1, 2, 0))) plt.savefig('RealAndFake' + str(image_size) + "_" + str(epochs) + '.png') plt.close()
import load_data import generative_models as gm import generative_alg as ga import classify_models as cm import classify_alg as ca import adverse_alg as aa import augment import sys import csv import glob import numpy as np import os.path if __name__ == "__main__": train, dev, test, wi, glove, prem_len, hypo_len = load_data.main() method = sys.argv[1] c_hidden_size = 150 a_hidden_size = 150 g_hidden_size = int(sys.argv[3]) beam_size = 1 version = int(sys.argv[2]) batch_size = 64 gen_epochs = 20 latent_size = int(sys.argv[4]) div_per_premise = 64 div_samples = 32 augment_file_size = 2**15 aug_threshold = 0.9 thresholds = [0.0, 0.3, 0.6, aug_threshold
self.epochs = epochs def main(data, args): trainer = Trainer(args) # gin configured #FIXME: combine into one line once stuff works mode_module = importlib.import_module(args.mode) model = mode_module.build_model(args) model.compile(optimizer=trainer.optimizer, loss=trainer.loss, metrics=trainer.metrics) tr_history = model.fit_generator( generator=data.generator('train'), verbose=2, # one line per epoch batch_size=trainer.batch_size, epochs=trainer.epochs, # = total data / batch_size validation_split=0.1, # fraction of data used for val shuffle=True) return model if __name__ == "__main__": args = parse_args.parse_with_resolved_paths() gin.parse_config_file(args.configpath) data = load_data.main(args) main(data, args)
def test_load_data_long(self): path = os.path.join(settings.MEDIA_ROOT, "tests", "data_long.csv") with open(path, 'r') as f: load_data.main(f)
#SETUP #------------------------------------------------ foldername = "lrd:"+str(lr_discriminator)+"lrg:" +str(lr_generator) + ",bsize:" + str(batch_size) print(foldername) if not os.path.exists(foldername): os.makedirs("lrd:"+str(lr_discriminator)+"lrg:" +str(lr_generator) + ",bsize:" + str(batch_size)) f = open(foldername+"/demofile3.txt", "w") f.write(foldername) f.close() # Images dataloader = load_data.main(image_size,batch_size) # CUDA support -> if ngpu > 0 & Cuda is available device = torch.device("cuda:0" if( torch.cuda.is_available() and ngpu > 0) else "cpu") # Initialize the trainable params as stated in DCGAN paper (Radford, 2016) def init_weights(model): classname = model.__class__.__name__ # Convolutional layers if(classname.find('Conv') != -1): nn.init.normal_(model.weight.data, 0.0, 0.02) # Batchnorm layers elif classname.find('BatchNorm') != -1:
type=int, default=5, help="Checkpoint epochs") parser.add_argument('--bsize', type=int, default=128, help="Batch_size") args = parser.parse_args() ngpu = args.ngpu img_size = args.i ndf = img_size ngf = img_size current = args.curr k = args.k device = torch.device("cuda:0" if ( torch.cuda.is_available() and ngpu > 0) else "cpu") dataloader = load_data.main(128) filepath = 'Training/model' gen = models.Generator(ngpu, ngf) dis = models.Discriminator(ngpu, ndf) try: gen.load_state_dict( torch.load(filepath + "G_" + str(img_size) + "_" + str(current), map_location=device)) dis.load_state_dict( torch.load(filepath + "D_" + str(img_size) + "_" + str(current), map_location=device)) except: print(current) print(img_size) print("Models does not exist")
def main(_): tf.reset_default_graph() # Import data train_data_sounds,test_data_sounds,train_data_labels,test_data_labels_og,test_data_id = load_data.main() print('Data Loaded') test_data_tag = np.arange(3750) img_number = len(test_data_labels_og) log_per_epoch = int(1000/FLAGS.max_epochs) log_frequency = len(train_data_labels)/FLAGS.batch_size/log_per_epoch if log_frequency == 0 : log_frequency+=1 #Data placeholders train_data_placeholder = tf.placeholder(tf.float32, [None, 80, 80]) train_labels_placeholder = tf.placeholder(tf.int32, [None]) test_data_placeholder = tf.placeholder(tf.float32, [None, 80, 80]) test_labels_placeholder = tf.placeholder(tf.int32, [None]) test_id_placeholder = tf.placeholder(tf.int32, [None]) test_tag_placeholder = tf.placeholder(tf.int32, [None]) #Train split n_sounds = len(train_data_labels) train_iterator = batch_this(train_data_placeholder,train_labels_placeholder,FLAGS.batch_size,n_sounds) train_batch = train_iterator.get_next() #Test split test_data_labels = test_data_labels_og test_iterator = batch_this(test_data_placeholder,test_labels_placeholder,FLAGS.batch_size,len(test_data_labels),1) test_batch = test_iterator.get_next() print('Data preprocessing done') with tf.variable_scope('inputs'): x = tf.placeholder(tf.float32, [None,80,80]) y_ = tf.placeholder(tf.int32, [None]) #Deep or shallow model if FLAGS.model_type == 'shallow': y_conv = shallow(x,FLAGS.initialiser) elif FLAGS.model_type == 'deep': y_conv = deep(x,FLAGS.initialiser) #Loss with tf.variable_scope('x_entropy'): cross_entropy = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) #L1 regularization l1_regularizer = tf.contrib.layers.l1_regularizer(scale=0.0001) all_weights = tf.trainable_variables() regularization_factor = tf.contrib.layers.apply_regularization(l1_regularizer, weights_list= all_weights) cross_entropy += regularization_factor #Learning rate + Adam optimizer if FLAGS.learning_type == 'decay': global_step = tf.Variable(0, trainable=False) learning_rate = tf.train.exponential_decay(FLAGS.learning_rate,global_step ,1000,0.8) optimiser = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy,global_step=global_step) elif FLAGS.learning_type == 'normal': optimiser = tf.train.AdamOptimizer(FLAGS.learning_rate,beta1=0.9,beta2=0.999,epsilon=1e-08).minimize(cross_entropy) #Accuracy accuracy = tf.equal(tf.argmax(y_conv,1),tf.cast(y_, tf.int64)) accuracy = tf.reduce_mean(tf.cast(accuracy, tf.float32)) #Summaries loss_summary = tf.summary.scalar('Loss', cross_entropy) acc_summary = tf.summary.scalar('Accuracy', accuracy) merged = tf.summary.merge([loss_summary,acc_summary]) with tf.Session() as sess: #Summary writers train_writer = tf.summary.FileWriter(run_log_dir + '_train', sess.graph,flush_secs=5) test_writer = tf.summary.FileWriter(run_log_dir + '_test', sess.graph,flush_secs=5) sess.run(tf.global_variables_initializer()) step = 0 #TRAINING LOOP for epoch in range(FLAGS.max_epochs): #Run initializers sess.run(train_iterator.initializer,feed_dict={train_data_placeholder:train_data_sounds, train_labels_placeholder:train_data_labels}) sess.run(test_iterator.initializer,feed_dict={test_data_placeholder:test_data_sounds, test_labels_placeholder:test_data_labels}) print('Epoch:',epoch) while True: #Train optimizer for all batches, stop when out of range try: [train_sounds,train_labels] = sess.run(train_batch) _,train_summary = sess.run([optimiser,merged], feed_dict={x:train_sounds, y_:train_labels}) except tf.errors.OutOfRangeError: break #Print Accuracy on test set [test_sounds,test_labels] = sess.run(test_batch) validation_accuracy,test_summary = sess.run([accuracy,merged], feed_dict={x:test_sounds, y_:test_labels}) if step % 170 == 0: print(' step: %g,accuracy: %g' % (step,validation_accuracy)) #Add summaries if step % log_frequency == 0: train_writer.add_summary(train_summary,step) test_writer.add_summary(test_summary,step) step+=1 print('Training done') #EVALUATION on test set evaluated_images = 0 test_accuracy = 0 batch_count = 0 sess.run(test_iterator.initializer,feed_dict={test_data_placeholder:test_data_sounds, test_labels_placeholder:test_data_labels}) while evaluated_images != img_number: [test_sounds,test_labels] = sess.run(test_batch) evaluated_images += len(test_labels) test_accuracy_temp = sess.run(accuracy, feed_dict={x: test_sounds, y_: test_labels}) test_accuracy += test_accuracy_temp batch_count += 1 test_accuracy = test_accuracy / batch_count print(test_accuracy)
def weekly_update(db_choice, drop_tables_first=False): #TODO should update the secrets.json keys to make them simpler so that this mapping is irrelevant send_log = True debug = True #Run the jobs try: if drop_tables_first: remove_table_flag = '--remove-tables' tables_to_remove = 'all' else: remove_table_flag = '' tables_to_remove = '' #Get and load data in order so that we appropriately deal with duplicate records #Start with MAR so that we can geocode things arguments = get_api_data.parser.parse_args( [db_choice, '--modules', 'opendata', '--ids', 'mar']) get_api_data.get_multiple_api_sources(arguments) arguments = load_data.parser.parse_args([ db_choice, '--update-only', 'mar', '--skip-calculations', remove_table_flag, tables_to_remove ]) load_data.main(arguments) #prescat arguments = get_api_data.parser.parse_args( [db_choice, '--modules', 'prescat']) get_api_data.get_multiple_api_sources(arguments) arguments = load_data.parser.parse_args([ db_choice, '--update-only', 'prescat_project', 'prescat_subsidy', 'prescat_addre', 'prescat_reac', 'prescat_real_property', 'prescat_parcel', '--skip-calculations' ]) load_data.main(arguments) #then DHCD since it has better data when duplicate entries appear in DCHousing arguments = get_api_data.parser.parse_args( [db_choice, '--modules', 'dhcd']) get_api_data.get_multiple_api_sources(arguments) arguments = load_data.parser.parse_args([ db_choice, '--update-only', 'dhcd_dfd_properties_project', 'dhcd_dfd_properties_subsidy', 'dhcd_dfd_properties_addre', '--skip-calculations' ]) load_data.main(arguments) #Then DCHousing arguments = get_api_data.parser.parse_args( [db_choice, '--modules', 'DCHousing']) get_api_data.get_multiple_api_sources(arguments) arguments = load_data.parser.parse_args([ db_choice, '--update-only', 'dchousing_project', 'dchousing_subsidy', 'dchousing_addre', '--skip-calculations' ]) load_data.main(arguments) #Then everything else #TODO it's a little bit clunky to do it this way but to do "everything else" we'd need to modify load_data to accept a negative list arguments = get_api_data.parser.parse_args([ db_choice, '--modules', 'opendata', #TODO temporarily skipped because it's slow: 'wmata_distcalc', 'census' ]) get_api_data.get_multiple_api_sources(arguments) arguments = load_data.parser.parse_args([ db_choice, '--update-only', 'tract2010_ward2012', 'tract2010_cluster2000', 'tax', #'hmda_all_dc', 'topa_rcasd_2017', 'topa_rcasd_2016', 'topa_rcasd_2015', 'building_permits_2016', 'building_permits_2017', 'crime_2016', 'crime_2017', 'acs5_2015', 'wmata_stops', 'wmata_dist' ]) load_data.main(arguments) except Exception as e: logger.error("Weekly update failed with error: %s", e) if debug: raise e finally: if send_log: send_log_file_to_admin(debug=debug)
def main(): print('## Running the %s' % load_data.__name__) load_data.main() print('## Running the %s' % train_models.__name__) train_models.main()
# def __init__(self): # # def eval(): # # def _single_move(): # # # # TODO def main(args, data, model): agent = random.choice(list(data.test_data)) steps = sum([len(game[0]) for game in data.test_data[agent]]) print('\n# Evaluate on test data') results = model.evaluate_generator(generator=data.naive_generator( 32, 'test'), steps=steps) print('test loss, test acc:', results) # read in test data # forward pass with model # display metrics, save results if __name__ == "__main__": args = parse_args.parse() data = load_data.main() model = train.main(data, args) main(args, data, model)
import load_data import generative_models as gm import generative_alg as ga import classify_models as cm import classify_alg as ca import adverse_alg as aa import augment import sys import csv import glob import numpy as np import os.path if __name__ == "__main__": train, dev, test, wi, glove, prem_len, hypo_len = load_data.main() method = sys.argv[1] version = int(sys.argv[2]) g_hidden_size = int(sys.argv[3]) latent_size = int(sys.argv[4]) c_hidden_size = 150 a_hidden_size = 150 beam_size = 1 batch_size = 64 gen_epochs = 20 div_per_premise = 64 div_samples = 32 augment_file_size = 2 ** 15 aug_threshold = 0.9
def test_main(self): self.assertTrue(load_data.main())
import numpy as np import pandas as pd import multiprocessing as mp import matplotlib.pyplot as plt from machine_learning_hep.utilities import create_folder_struc, seldf_singlevar, openfile from multiprocessing import Pool, cpu_count from parallel_calc import split_df, parallelize_df, num_cores, num_part from load_data import main import time debug = False real_data = True plots = False dfreco = main(debug, real_data, plots) #parallelized functions over the dataframe print("parallelizing will be done with", num_cores, "cores") def filter_phi(df): delta_phi_all = [] grouped = df.groupby(["run_number", "ev_id"], sort=False) df["is_d"] = 0 for name, group in grouped: pt_max = group["pt_cand"].idxmax() phi_max = df.loc[pt_max, "phi_cand"] df.loc[pt_max, "is_d"] = 1 delta_phi = np.abs(phi_max - group["phi_cand"]) delta_phi_all.extend(delta_phi)
def main(): querydir = "1k" timerfile = open('currents/' + querydir + '/time', 'w') inittime = time.time() load_data.main(timerfile, querydir) timerfile.write("Total loading time " + str(time.time() - inittime) + '\n\n') std_out = sys.stdout initqfulltime = time.time() sys.stdout = open('currents/' + querydir + '/q1out', 'w') q1 = getqueryargsmaybeminus(querydir + "/queries1.txt") for arg in q1: initindiv = time.time() query1_load_retrieve.main(arg[0], arg[1], arg[2], querydir) timerfile.write('Query 1 ' + arg[0] + ' ' + arg[1] + ' ' + arg[2] + ' time ' + str(time.time() - initindiv) \ + '\n') sys.stdout.close() timerfile.write('Total q1 time ' + str(time.time() - initqfulltime) + '\n\n') sys.stdout = std_out print "Test 1 done" initqfulltime = time.time() sys.stdout = open('currents/' + querydir + '/q2out', 'w') q2 = getqueryargsnominus(querydir + "/queries2.txt") for arg in q2: initindiv = time.time() absolute_day = datetime.date(int(arg[1]), int(arg[2]), int(arg[3])).toordinal() query2.main(absolute_day, arg[0]) timerfile.write('Query 2 ' + arg[0] + ' ' + str(absolute_day) + ' time ' + str(time.time() - initindiv) \ + '\n') sys.stdout.close() timerfile.write('Total q2 time ' + str(time.time() - initqfulltime) + '\n\n') sys.stdout = std_out print "Test 2 done" initqfulltime = time.time() sys.stdout = open('currents/' + querydir + '/q3out', 'w') q3 = getqueryargsmaybeminus(querydir + "/queries3.txt") for arg in q3: initindiv = time.time() query3_more_opt.main(arg[0], arg[1], arg[2]) timerfile.write('Query 3 ' + arg[0] + ' ' + arg[1] + ' ' + arg[2] + ' time ' + str(time.time() - initindiv) + '\n') sys.stdout.close() timerfile.write('Total q3 time ' + str(time.time() - initqfulltime) + '\n\n') sys.stdout = std_out print "Test 3 done" initqfulltime = time.time() sys.stdout = open('currents/' + querydir + '/q4out', 'w') q4 = getqueryargsmaybeminus(querydir + "/queries4.txt") for arg in q4: initindiv = time.time() query4_more_opt.main(arg[0], arg[1], querydir) timerfile.write('Query 4 ' + arg[0] + ' ' + arg[1] + ' time ' + str(time.time() - initindiv) \ + '\n') sys.stdout.close() timerfile.write('Total q4 time ' + str(time.time() - initqfulltime) + '\n\n') sys.stdout = std_out print "Test 4 done" sys.stdout = open('currents/' + querydir + '/report', 'w') filecmp.dircmp('actuals/' + querydir, 'currents/' + querydir).report() sys.stdout.close() timerfile.close()