def get_im_names(start_index, end_index): imgset_path, jpg_dir, im_ext = io.get_ims_info() im_names = ld.get_im_names(imgset_path) ##get all the im_names(always) im_names = im_names[start_index:end_index + 1] ##trick2 if debug_flag: print 'imgset_path:', imgset_path print 'jpgdir_path:', jpg_dir print 'im_ext:', im_ext return im_names
def vis_picked_mult_instances(): print '=============================test vis_util=================================' track_mask_dir = io.get_track_mask_info(set_name) prop_file_path, prop_file_ext = io.get_dets_info(set_name) prop_arr = ld.load_det_proposals(prop_file_path) if debug_flag: print 'track_mask_dir:', track_mask_dir print 'prop_file_path:', prop_file_path print 'prop_file_ext:', prop_file_ext print 'prop_arr.shape:', prop_arr.shape ##0> load image names imgset_path, jpg_dir, im_ext = io.get_ims_info() im_names = ld.get_im_names(imgset_path) im_names = im_names[:test_frm_num] ##1> load color images rgb_ims = ld.load_color_images(jpg_dir, im_names, im_ext) vis_proposals_dir = io.get_vis_dir_info(vis_mult_prop_folder) iter_name = 'iter' + str(4) ## draw bbox per person frm_ids = np.unique(prop_arr[:, 0]).astype(int) frm_num = len(frm_ids) ##for debug for n_id in xrange( frm_num): ## label is obj_id (42 has some problems, 56) frm_id = frm_ids[n_id] row_indexs = np.where(prop_arr[:, 0] == frm_id)[0] ##frame indexes frm_prop_arr = prop_arr[row_indexs] frm_labels = frm_prop_arr[:, 1].astype(int) im = rgb_ims[n_id] im_name = set_name + '_' + str(frm_ids[n_id] + shift_num).zfill(6) if len(frm_labels) == 0: continue masks = load_frame_masks(track_mask_dir, frm_labels, iter_name, im_name) boxes = load_frame_boxes(track_mask_dir, frm_id, frm_labels, iter_name) if debug_flag: print 'frm_id:', frm_id print 'frm_labels:', frm_labels.shape print 'masks.shape:', len(masks) print 'boxes.shape:', boxes.shape vis_proposals_multi_instances(vis_proposals_dir, iter_name, im, im_name, boxes, masks, frm_labels) if debug_flag: print 'track_mask_dir:', track_mask_dir ##print 'im_names:', im_names print 'vis_proposals_dir:', vis_proposals_dir
def generate_final_vis_imgs(): ##vis_picked_mult_instances() ## run this first, and then the following...\ final_vis_dir = '/mnt/phoenix_fastdir/experiments/final_vis' final_vis_dir = os.path.join(final_vis_dir, set_name) org_mrcnn_dir = os.path.join(final_vis_dir, 'org_MRCNN') pickd_mrcnn_dir = os.path.join(final_vis_dir, 'picked_MRCNN') link_mrcnn_dir = os.path.join(final_vis_dir, 'link_MRCNN') ##0> load image names imgset_path, jpg_dir, im_ext = io.get_ims_info() im_names = ld.get_im_names(imgset_path) im_names = im_names[:test_frm_num] # if debug_flag: # print 'imgset_path:',imgset_path # print 'jpg_dir:', jpg_dir # print 'im_ext:', im_ext # print 'im_names:', im_names vis_link_imgs(im_names, org_mrcnn_dir, pickd_mrcnn_dir, link_mrcnn_dir)
def test_vis_gt_boxes(): imgset_path, jpg_dir, im_ext = io.get_ims_info() im_names = ld.get_im_names(imgset_path) ims = ld.load_color_images(jpg_dir, im_names, im_ext) data_dir = os.path.join(mcfg.DATA.DATA_DIR, set_name) tud_dets_gt_path = get_dets_annots_path(data_dir) if debug_flag: print 'imgset_path:', imgset_path print 'jpg_dir:', jpg_dir print 'im_ext:', im_ext print 'data_dir:', data_dir print 'tud_dets_gt_path:', tud_dets_gt_path tud_dets_arr = load_dets_annots(tud_dets_gt_path) frm_ids = tud_dets_arr[:, 0].astype(int) obj_ids = tud_dets_arr[:, -1].astype(int) # uniq_obj_ids=np.sort(np.unique(obj_ids)) # for u_id in uniq_obj_ids: # label_row_indexes=np.where(obj_ids==u_id)[0] # label_frm_ids=frm_ids[label_row_indexes] # print 'u_id:',u_id # print 'label_frm_ids:', label_frm_ids # if debug_flag: # print 'tud_dets_arr.shape:', tud_dets_arr.shape # print 'frm_ids:', frm_ids # print 'obj_ids:', obj_ids # print 'uniq_obj_ids:', uniq_obj_ids coords = tud_dets_arr[:, 1:5] ##vis_arr=tud_dets_arr[:,5]/100.0 ##make vis range in [0, 1.0] boxes = coords_to_boxes(coords) ## unnormal det_dir = mcfg.PROPOSAL.RES_DIR.replace('Continious', 'Discrete') gt_det_dir = os.path.join(det_dir, 'vis_gt_boxes') for n_id in xrange(len(im_names)): im = ims[n_id] im_name = im_names[n_id] frm_id = int(im_name.split('_')[1]) row_indexes = np.where(frm_ids == frm_id)[0] frm_boxes = boxes[row_indexes] frm_obj_ids = obj_ids[row_indexes] vis_gt_bboxes(gt_det_dir, im, im_name, frm_boxes, frm_obj_ids)
def get_im_names(): imgset_path, jpg_dir, im_ext = io.get_ims_info() im_names = ld.get_im_names(imgset_path) return im_names
def get_im_names(): ##0> load image names imgset_path, jpg_dir, im_ext = io.get_ims_info() im_names = ld.get_im_names(imgset_path) return im_names