import numpy as np import load_word_vecs as word_vecs from sklearn.decomposition import PCA # import matplotlib.pyplot as plt # from mpl_toolkits.mplot3d import Axes3D import test_bigrams as tb import matplotlib import pylab as pl import train_neural_network as tnn if __name__ == '__main__': vecs = word_vecs.load("../data/vectors.txt") labels, wordVecsMatrix = word_vecs.get_matrix(vecs) pca = PCA(n_components=2) # pca.fit(wordVecsMatrix); # reduced_X = pca.transform(wordVecsMatrix) # print "Running PCA" # pca = PCA(n_components=2) # pca.fit(wordVecsMatrix); # reduced_X = pca.transform(wordVecsMatrix) # fig = pl.figure() # ax = fig.add_subplot(111, projection='3d') #plot full data # ax.scatter(reduced_X[:, 0], reduced_X[:, 1], reduced_X[:, 2])
#!/usr/bin/env python import numpy as np import load_word_vecs as word_vecs from sklearn.decomposition import PCA # import matplotlib.pyplot as plt # from mpl_toolkits.mplot3d import Axes3D import test_bigrams as tb import matplotlib import pylab as pl import train_neural_network as tnn if __name__ == '__main__': vecs = word_vecs.load("../data/vectors.txt") labels, wordVecsMatrix = word_vecs.get_matrix(vecs) pca = PCA(n_components=2) # pca.fit(wordVecsMatrix); # reduced_X = pca.transform(wordVecsMatrix) # print "Running PCA" # pca = PCA(n_components=2) # pca.fit(wordVecsMatrix); # reduced_X = pca.transform(wordVecsMatrix) # fig = pl.figure() # ax = fig.add_subplot(111, projection='3d') #plot full data # ax.scatter(reduced_X[:, 0], reduced_X[:, 1], reduced_X[:, 2]) # plt.show()
#!/usr/bin/env python import numpy as np import load_word_vecs as word_vecs import bh_tsne.bhtsne as tsne if __name__ == '__main__': labels, wordVecsMatrix = word_vecs.get_matrix(word_vecs.load("../data/vectors.txt")) # #runs tsne on wordVecsMatrix (change if we want to just look at some subset of the bigrams) points = tsne.bh_tsne(wordVecsMatrix); # np.save("../data/tsne_coordinates", points);
#!/usr/bin/env python import numpy as np import load_word_vecs as word_vecs import bh_tsne.bhtsne as tsne if __name__ == '__main__': labels, wordVecsMatrix = word_vecs.get_matrix( word_vecs.load("../data/vectors.txt")) # #runs tsne on wordVecsMatrix (change if we want to just look at some subset of the bigrams) points = tsne.bh_tsne(wordVecsMatrix) # np.save("../data/tsne_coordinates", points);