def main(): ''' dataset_used = "german" for i in range(3): if i == 0: arr = dataset_used + " " + "[1, 0, 0]" if i == 1: continue if i == 2: arr = dataset_used + " " + "[0, 0, 1]" protected_attribute_used = attribute[i] for l in range(5): for m in range(4): for n in range(4): dataset_orig, privileged_groups, unprivileged_groups, optim_options = LoadData(dataset_used, protected_attribute_used) algorithm_used = arr + " " + "[" + " " + str(l) + " " + str(m) + " " + str(n) + "]" #dataset_original = copy.deepcopy(dataset_orig) feature = comb_algorithm(l, m, n, dataset_orig, privileged_groups, unprivileged_groups, optim_options) result = str(algorithm_used + feature) print(result) with open('comb_algor_german544.txt', 'a') as f: f.write(result) f.write("\n") f.close() ''' dataset_used = "german" # if i == 0 and j == 2: protected_attribute_used = "sex" dataset_orig, privileged_groups, unprivileged_groups, optim_options = LoadData( dataset_used, protected_attribute_used) l = 2 m = 0 n = 1 feature = comb_algorithm(l, m, n, dataset_orig, privileged_groups, unprivileged_groups, optim_options) print(l, m, n) print(feature)
def get_2d_array(index,chi0s,R_avg0s): data_path = "../../2019-08-02/R_avg0_vs_chi0_scans" loadfilepath = data_path + "/data_formatted" datfile = data_path + "/data_formatted/input.dat" scan = {} loadsuf=["sigma_R0","R_eq","volFrac_0","beta","chi_0"] savesuf=["sigma_R0","R_eq","volFrac_0","beta"] thearray = np.zeros([len(chi0s),len(R_avg0s)],float) for i,chi0 in enumerate(chi0s): scan['chi_0'] = str(chi0) ld = LoadData(name=f"scanning",scan=scan,loadfilepath=loadfilepath, loadsuf=loadsuf,savesuf=savesuf, datfile=datfile) row = ld.data[:,index] if index != 4 and index != -1: Nrow = ld.data[:,4].astype(int) row[np.where(Nrow <= 1)] = np.nan thearray[i,:] = row return thearray,ld
self.saver = tf.train.Saver() model_path = os.path.join(backup_path, 'model.ckpt') assert (os.path.exists(model_path + '.index')) self.saver.restore(self.sess, model_path) print('Successfully read model from %s' % (model_path)) #在测试集上计算准确率 accuracy_list = [] test_images = dataloader[0] test_labels = dataloader[1] #test_images = dataloader.data_augmenttation(dataloader.test_images, flip = False, crop = True, crop_shape = (24, 24, 3), whiten = True, noise = False) #test_labels = dataloader.test_labels for i in range(0, data.n_test, batch_size): batch_images = test_images[i:i + batch_size] batch_labels = test_labels[i:i + batch_size] [avg_accuracy] = self.sess.run(fetches=[self.accuracy], feed_dict={ self.images: batch_images, self.labels: batch_labels, self.keep_prob: 1.0 }) accuracy_list.append(avg_accuracy) print('test precision: %.4f' % (100 * numpy.mean(accuracy_list)) + '%') self.sess.close() cnn = ConvNet() data = LoadData() #data = Corpus() cnn.train(([data.train_images, data.train_labels ], [data.valid_images, data.valid_labels]), 'model3/') cnn.test([data.test_images, data.test_labels], 'model3/')
for j,sigma in enumerate(sigmas): scan['sigma_R0'] = str(sigma) rp = ReadParams(scan=scan,datfile=datfile) ts = rp.list_of_t_vals() Ns = np.empty([len(ts)],float) for i_t,t in enumerate(ts): ld = LoadData(name=f"radius_{i_t}",scan=scan,savesuf=savesuf, loadfilepath=loadfilepath,datfile=datfile) Rs = ld.data[:,1] Ns[i_t] = Rs.size axarr.flat[i].plot(ts,Ns,markers[j],color=colors[j], label=rf"$\sigma=\num{{{sigma:.0e}}}$") axarr.flat[i].set_title(rf"$<\,R\,>(t=0)={R_avg0:.1f}$") axarr.flat[i].set_yscale('log') axarr.flat[i].set_xlabel(r"$t$")
scan['chi_0'] = chi_0(R_avg0) for j, sigma in enumerate(sigmas): scan['sigma_R0'] = str(sigma) rp = ReadParams(scan=scan) ts = rp.list_of_t_vals() Ns = np.empty([len(ts)], float) for i_t, t in enumerate(ts): ld = LoadData(name=f"radius_{i_t}", scan=scan, savesuf=savesuf) Rs = ld.data[:, 1] Ns[i_t] = Rs.size axarr.flat[i].plot(ts, Ns, markers[j], color=colors[j], label=rf"$\sigma=\num{{{sigma:.0e}}}$") axarr.flat[i].set_title(rf"$<\,R\,>(t=0)={R_avg0:.1f}$") axarr.flat[i].set_xlabel(r"$t$") axarr.flat[i].set_ylabel(r"$N(t)$")
for j, sigma in enumerate(sigmas): scan['sigma_R0'] = str(sigma) rp = ReadParams(scan=scan, datfile=datfile) ts = rp.list_of_t_vals() R_avgts = np.empty([len(ts)], float) sigma_Rts = np.empty([len(ts)], float) chi_spaced = np.empty([len(ts)], float) ldchi = LoadData(scan=scan, savesuf=savesuf, loadfilepath=loadfilepath, datfile=datfile) t_smalls = ldchi.data[:, 0] chis = ldchi.data[:, 1] for i_t, t in enumerate(ts): ld = LoadData(name=f"radius_{i_t}", scan=scan, savesuf=savesuf, loadfilepath=loadfilepath, datfile=datfile) Rs = ld.data[:, 1]
scan['sigma_R0'] = str(sigma) rp = ReadParams(scan=scan, datfile=datfile) ts = rp.list_of_t_vals() print(len(ts)) fig, axarr = plt.subplots(3, len(ts) // 3) fig.set_size_inches(width, height) for i_t, t in enumerate(ts): ld = LoadData(name=f"radius_{i_t}", scan=scan, loadfilepath=loadfilepath, datfile=datfile) Rs = ld.data[:, 1] axarr.flat[i_t].hist(Rs, density=True, stacked=True) axarr.flat[i_t].set_xlabel(r"$<R>(t)$") axarr.flat[i_t].set_xlim(0, 20) axarr.flat[i_t].set_ylim(0, 1) axarr.flat[i_t].text(3, 0.5, rf"$t=\num{{{t:.1e}}}$") fig.suptitle(rf"$<\,R\,>(t=0)={R_avg0:.1f}$" + ", " + rf"$\sigma(t=0)=\num{{{sigma:.0e}}}$") fig.subplots_adjust(bottom=0.08, top=0.95, left=0.08, right=0.95)
def main(): dataset_used = "adult" for i in range(2): if i == 0: arr = dataset_used + " " + "[1, 0, 0]" if i == 1: arr = dataset_used + " " + "[0, 1, 0]" protected_attribute_used = attribute[i] for l in range(5): for m in range(4): for n in range(4): dataset_orig, privileged_groups, unprivileged_groups, optim_options = LoadData( dataset_used, protected_attribute_used) algorithm_used = arr + " " + "[" + " " + str( l) + " " + str(m) + " " + str(n) + "]" #dataset_original = copy.deepcopy(dataset_orig) feature = comb_algorithm(l, m, n, dataset_orig, privileged_groups, unprivileged_groups, optim_options) result = str(algorithm_used + feature) print(result) with open('comb_algor_adult544.txt', 'a') as f: f.write(result) f.write("\n") f.close() '''
#%% # Imports from loaddata import LoadData import matplotlib.pyplot as plt %matplotlib qt import mglearn from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet, LogisticRegression from sklearn.svm import LinearSVC from sklearn.datasets import make_blobs import numpy as np import pandas as pd #%% # Loading data ld = LoadData() #%% # Linear model for wave data X, y = ld.load_wave(n_samples=60) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) lr = LinearRegression().fit(X_train, y_train) print(f'Train score: {lr.score(X_train,y_train)}') print(f'Test score: {lr.score(X_test,y_test)}') # %% # Linear model on Boston Housing data X, y = ld.load_boston() X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) lr = LinearRegression().fit(X_train, y_train) print(f'Train score: {lr.score(X_train,y_train)}')
def main(): dataset_used = "german" protected_attribute_used = "sex" arr = dataset_used + " " + "[1, 0, 0]" data = np.zeros((80, 8)) i = 0 for l in range(5): for m in range(4): for n in range(4): dataset_orig, privileged_groups, unprivileged_groups, optim_options = LoadData( dataset_used, protected_attribute_used) algorithm_used = arr + " " + "[" + " " + str(l) + " " + str( m) + " " + str(n) + "]" while (True): feature, feature_str = comb_algorithm( l, m, n, dataset_orig, privileged_groups, unprivileged_groups, optim_options) if feature[1] == 0.5: print(feature) continue else: break print(feature) data[i] = feature i = i + 1 result = str(algorithm_used + feature_str) print(result) with open('german_sex_forAcc.txt', 'a') as f: f.write(result) f.write("\n") f.close() '''
# countries_oi = ["Italy", "Spain", "England", "France", "Netherlands", "Belgium", "Germany", "Switzerland", "Austria", # "Hungary", "Czech Republic", "Slovakia", "Slovenia", "Poland", "Romania", "Bulgaria", "Macedonia", "Bosnia", # "Croatia", "Serbia", "Montenegro", "Albania"] # Everything # countries_oi = ["Netherlands","Germany","France","Belgium","Swiss German","England","Scotland","Ireland","Switzerland"] # countries_oi_west print("Welcome back, friend.") while True: inp = input( ("\nWhat do you want to do? \n(1) Extract data \n(2) Analyze Data" "\n(8) Save/Load data \n(0) Exit \n")) if inp == 1: min_len = input("What is the minimum block length? (in cM)?\n") data = LoadData(pop_path, ibd_list_path, coordinates_path, min_len, countries_oi) analysis = MLE_analyse(data, all_chrom=True) elif inp == 2: while True: inp1 = input(( "\n(1) Regress spec. block sharing \n(2) Regress min. block sharing \n(3) Bin-Plot" "\n(4) MLE estimation" "\n(0) Exit \n")) if inp1 == 1: min_len = input("What is the minimum block length? (in cM)?\n") max_len = input("What is the maximum block length? (in cM)?\n") analysis.plot_ibd_spec(min_len=min_len, max_len=max_len) elif inp1 == 2: min_len = input("What is the minimum block length? (in cM)?\n") analysis.plot_ibd_min(min_len, 150)
scan = {} lines = [":", "-.", "--", "-", ":"] for i, R_avg0 in enumerate(R_avg0s): scan['R_avg0'] = str(R_avg0) scan['chi_0'] = chi_0(R_avg0) for j, sigma in enumerate(sigmas): scan['sigma_R0'] = str(sigma) ld = LoadData(scan=scan, savesuf=savesuf) ts = ld.data[:, 0] chis = ld.data[:, 1] axarr.flat[i].set_title(rf"$<\,R\,>(t=0)={R_avg0:.1f}$") axarr.flat[i].plot(ts, chis, '-', color=colors[j], linestyle=lines[j], lw=4, label=rf"$\sigma(t=0)=\num{{{sigma:.0e}}}$") axarr.flat[i].set_xlabel(r"$t$")
scan = {} lines = [":","-.","--","-",":"] for i,R_avg0 in enumerate(R_avg0s): scan['R_avg0'] = str(R_avg0) scan['chi_0'] = chi_0(R_avg0) for j,sigma in enumerate(sigmas): scan['sigma_R0'] = str(sigma) ld = LoadData(scan = scan,savesuf=savesuf,datfile=datfile,loadfilepath=loadfilepath) ts = ld.data[:,0] chis = ld.data[:,1] axarr.flat[i].set_title(rf"$<\,R\,>(t=0)={R_avg0:.1f}$") axarr.flat[i].plot(ts,chis,'-',color=colors[j],linestyle=lines[j], lw=4, label=rf"$\sigma(t=0)=\num{{{sigma:.0e}}}$") axarr.flat[i].set_xlabel(r"$t$") axarr.flat[i].set_ylabel(r"$\chi(t)$") axarr.flat[i].legend(frameon=False,handlelength=5)
12 |rho (g/m ** 3) |1307.75 |Airtight 13 |wv (m/s) |1.03 |Wind speed 14 |max. wv (m/s) |1.75 |Maximum wind speed 15 |wd (deg) |152.3 |Wind direction in degrees 16 |rain (mm) |0.0 |Amount of the rainfall 17 |raining (s) |0.0 |Duration of the rainfall 18 |SWDR (W/m ** 2) |0.0 |Global radiation 19 |PAR (mu_mol/m**2/s) |0.0 |Photosynthetically active radiation 20 |max. PAR (mu_mol/m**2/s)|0.0 |Maximum photosynthetically active radiation 21 |Tlog (degC) |36.93 |Internal temperature of the data logger 22 |CO2 (ppm) |434.1 |CO2 concentration of the outside air """ import os import pandas as pd import matplotlib.pyplot as plt from loaddata import LoadData from parsedata import ParseData data_dir = 'data/' data = LoadData.load(data_dir=data_dir) parser = ParseData() train_data, test_data = parser.parse(data=data)
''' Developer: vkyprmr Filename: trees.py Created on: 2020-09-04 at 16:45:27 ''' ''' Modified by: vkyprmr Last modified on: 2020-09-04 at 16:45:28 ''' #%% # Imports from loaddata import LoadData ld = LoadData() from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt %matplotlib qt from sklearn.tree import export_graphviz import graphviz import numpy as np import pandas as pd #%% # Breast cancer data X, y, fn, tn = ld.load_cancer() X_train, X_test, y_train, y_test = train_test_split( X, y, stratify=y, random_state=42) tree = DecisionTreeClassifier(random_state=0) tree.fit(X_train, y_train) print(f"Accuracy on training set: {tree.score(X_train, y_train)}")