Example #1
0
    def execute_scans(players, subjects):
        # TODO: account for world wrapping
        for player in players:
            (radius,) = player.scan

            # TODO: subtract energy cost (and signal death if it proved fatal)

            for subject in subjects:
                # calculate distance to all subjects, signal detect if within scan
                distance = util.distance(player.location, subject.location)
                if distance <= radius:
                    player.signal_detect(
                        subject.name, util.angle(player.location, subject.location), distance, subject.energy
                    )
Example #2
0
    def execute_scans(players, subjects):
        # TODO: account for world wrapping
        for player in players:
            (radius, ) = player.scan

            # TODO: subtract energy cost (and signal death if it proved fatal)

            for subject in subjects:
                # calculate distance to all subjects, signal detect if within scan
                distance = util.distance(player.location, subject.location)
                if distance <= radius:
                    player.signal_detect(
                        subject.name,
                        util.angle(player.location, subject.location),
                        distance, subject.energy)
Example #3
0
    def execute_fires(players, subjects):
        # TODO: account for world wrapping
        for player in players:
            # unpack required information
            (angle, distance, radius, charge) = player.fire
            loc_x, loc_y = player.location
            lim_x, lim_y = config.game.field_dimensions
            # calculate the epicenter of the blast
            epicenter = ((loc_x + cos(angle) * distance) % lim_x, (loc_y + sin(angle) * distance) % lim_y)

            # TODO: subtract energy cost (and signal death if it proved fatal)

            for subject in subjects:
                # calculate distance to epicenter for all subjects, signal hit if ... hit
                if util.distance(epicenter, subject.location) <= radius:
                    subject.signal_hit(player.name, util.angle(subject.location, epicenter), charge)
Example #4
0
    def execute_fires(players, subjects):
        # TODO: account for world wrapping
        for player in players:
            # unpack required information
            (angle, distance, radius, charge) = player.fire
            loc_x, loc_y = player.location
            lim_x, lim_y = config.game.field_dimensions
            # calculate the epicenter of the blast
            epicenter = ((loc_x + cos(angle) * distance) % lim_x,
                         (loc_y + sin(angle) * distance) % lim_y)

            # TODO: subtract energy cost (and signal death if it proved fatal)

            for subject in subjects:
                # calculate distance to epicenter for all subjects, signal hit if ... hit
                if util.distance(epicenter, subject.location) <= radius:
                    subject.signal_hit(player.name,
                                       util.angle(subject.location, epicenter),
                                       charge)
Example #5
0
    def execute_scans(self, players):
        result_signals = []
        for player in players:
            (radius, ) = player.scan_action
            logging.info('player {} at {} scanned with radius {}'.format(
                player.name, player.location, radius))

            # subtract energy cost
            cost = game.scan_cost(radius)
            prev_energy = player.energy
            player.energy -= cost

            self.emit_event(type='player_scan',
                            player=player.name,
                            location=player.location,
                            radius=radius,
                            cost=cost,
                            energy=(prev_energy, player.energy))
            if player.energy <= 0.0:
                # signal player is dead
                result_signals.append(self.player_death(player))
                self.emit_event(type='player_suicide',
                                action='scan',
                                cost=cost,
                                energy=(prev_energy, player.energy))
                logging.info('player {} died from exhaustion (scan)'.format(
                    player.name))
            else:
                x, y = player.location
                # calculate the bounding box for the scan
                bounds = (x - radius, y - radius, x + radius, y + radius)
                # collect all players in the bounding box for the blast
                subjects = set()
                for region in util.generate_wrapped_bounds(
                    (0, 0, self.width, self.height), bounds):
                    subjects = subjects.union(self.find_players(region))

                radius = util.WrappedRadius(player.location, radius,
                                            (self.width, self.height))
                # check if subject in scan radius (bounding box possibly selects too many players)
                for subject in subjects:
                    # calculate distance to all subjects, signal detect if within scan
                    # TODO: using radius twice runs the expensive operation twice
                    (distance,
                     wrapped_location) = radius.distance(subject.location)
                    if subject is not player and subject.location in radius:
                        result_signals.append(
                            (player.signal_detect, subject.name,
                             util.angle(player.location, wrapped_location),
                             util.distance(player.location,
                                           wrapped_location), subject.energy))
                        self.emit_event(type='player_detect',
                                        player=player.name,
                                        energy=player.energy,
                                        location=player.location,
                                        radius=radius,
                                        detected=subject.name,
                                        detected_location=subject.location,
                                        detected_energy=subject.energy)
                        logging.info('player {} detected {}'.format(
                            player.name, subject.name))
        return result_signals
Example #6
0
    def execute_fires(self, players):
        result_signals = []
        for player in players:
            # unpack required information
            (angle, distance, radius, charge) = player.fire_action
            # TODO: log fire action for player

            # calculate the epicenter of the blast
            epicenter = util.move_wrapped(player.location, angle, distance,
                                          (self.width, self.height))

            # subtract energy cost
            cost = game.fire_cost(distance, radius, charge)
            logging.info(
                'player {} at {} fired at {} (radius: {}, charge: {})'.format(
                    player.name, player.location, epicenter, radius, charge))

            prev_energy = player.energy
            player.energy -= cost

            # emit player fire event
            self.emit_event(type='player_fire',
                            player=player.name,
                            location=player.location,
                            angle=angle,
                            distance=distance,
                            radius=radius,
                            charge=charge,
                            cost=cost,
                            epicenter=epicenter,
                            energy=(prev_energy, player.energy))

            if player.energy <= 0.0:
                # signal player is dead
                result_signals.append(self.player_death(player))
                self.emit_event(type='player_suicide',
                                action='fire',
                                cost=cost,
                                energy=(prev_energy, player.energy))
                # XXX: possibly more to do with hitting one's self
                logging.info('player {} died from exhaustion (fire)'.format(
                    player.name))

            # calculate the bounding box for the blast
            bounds = (epicenter[0] - radius, epicenter[1] - radius,
                      epicenter[0] + radius, epicenter[1] + radius)
            # collect all players in the bounding box for the blast
            subjects = set()
            for region in util.generate_wrapped_bounds(
                (0, 0, self.width, self.height), bounds):
                subjects = subjects.union(self.find_players(region))

            # create a wrapped radius to check distance against
            radius = util.WrappedRadius(epicenter, radius,
                                        (self.width, self.height))
            # check if subject in blast radius (bounding box possibly selects too many players)
            for subject in subjects:
                # calculate distance to epicenter for all subjects, signal hit if ... hit
                if subject.location in radius:
                    # subtract energy equal to charge from subject that was hit
                    prev_energy = subject.energy
                    subject.energy -= charge
                    # emit player hit event
                    self.emit_event(type='player_hit',
                                    player=subject.name,
                                    location=subject.location,
                                    epicenter=epicenter,
                                    radius=radius,
                                    charge=charge,
                                    energy=(prev_energy, subject.energy),
                                    fatal=subject.energy <= 0.0,
                                    attacker=player.name,
                                    attacker_location=player.location,
                                    attacker_energy=player.energy)
                    # signal the subject it was hit
                    result_signals.append(
                        (player.signal_hit, player.name,
                         util.angle(
                             radius.distance(subject.location)[1],
                             epicenter), charge))
                    logging.info(
                        'player {} hit {} for {} (new energy: {})'.format(
                            player.name, subject.name, charge, subject.energy))
                    # check to see if the subject died from this hit
                    if subject.energy <= 0.0:
                        logging.info("player {} died from {}'s bomb".format(
                            subject.name, player.name))
                        result_signals.append(self.player_death(subject))
        return result_signals
Example #7
0
	def execute_scans(self, players):
		result_signals = []
		for player in players:
			(radius,) = player.scan_action
			logging.info('player {} at {} scanned with radius {}'.format(
				player.name,
				player.location,
				radius
			))

			# subtract energy cost
			cost = game.scan_cost(radius)
			prev_energy = player.energy
			player.energy -= cost

			self.emit_event(
				type = 'player_scan',
				player = player.name,
				location = player.location,
				radius = radius,
				cost = cost,
				energy = (prev_energy, player.energy)
			)
			if player.energy <= 0.0:
				# signal player is dead
				result_signals.append(self.player_death(player))
				self.emit_event(
					type = 'player_suicide',
					action = 'scan',
					cost = cost,
					energy = (prev_energy, player.energy)
				)
				logging.info('player {} died from exhaustion (scan)'.format(player.name))
			else:
				x, y = player.location
				# calculate the bounding box for the scan
				bounds = (
					x - radius, y - radius,
					x + radius, y + radius
				)
				# collect all players in the bounding box for the blast
				subjects = set()
				for region in util.generate_wrapped_bounds((0, 0, self.width, self.height), bounds):
					subjects = subjects.union(self.find_players(region))

				radius = util.WrappedRadius(player.location, radius, (self.width, self.height))
				# check if subject in scan radius (bounding box possibly selects too many players)
				for subject in subjects:
					# calculate distance to all subjects, signal detect if within scan
					# TODO: using radius twice runs the expensive operation twice
					(distance, wrapped_location) = radius.distance(subject.location)
					if subject is not player and subject.location in radius:
						result_signals.append((player.signal_detect, subject.name,
							util.angle(player.location, wrapped_location),
							util.distance(player.location, wrapped_location),
							subject.energy
						))
						self.emit_event(
							type = 'player_detect',
							player = player.name,
							energy = player.energy,
							location = player.location,
							radius = radius,
							detected = subject.name,
							detected_location = subject.location,
							detected_energy = subject.energy
						)
						logging.info('player {} detected {}'.format(player.name, subject.name))
		return result_signals
Example #8
0
	def execute_fires(self, players):
		result_signals = []
		for player in players:
			# unpack required information
			(angle, distance, radius, charge) = player.fire_action
			# TODO: log fire action for player

			# calculate the epicenter of the blast
			epicenter = util.move_wrapped(player.location, angle, distance, (self.width, self.height))

			# subtract energy cost
			cost = game.fire_cost(distance, radius, charge)
			logging.info('player {} at {} fired at {} (radius: {}, charge: {})'.format(
				player.name,
				player.location,
				epicenter,
				radius,
				charge
			))

			prev_energy = player.energy
			player.energy -= cost

			# emit player fire event
			self.emit_event(
				type = 'player_fire',
				player = player.name,
				location = player.location,
				angle = angle,
				distance = distance,
				radius = radius,
				charge = charge,
				cost = cost,
				epicenter = epicenter,
				energy = (prev_energy, player.energy)
			)

			if player.energy <= 0.0:
				# signal player is dead
				result_signals.append(self.player_death(player))
				self.emit_event(
					type = 'player_suicide',
					action = 'fire',
					cost = cost,
					energy = (prev_energy, player.energy)
				)
				# XXX: possibly more to do with hitting one's self
				logging.info('player {} died from exhaustion (fire)'.format(player.name))

			# calculate the bounding box for the blast
			bounds = (
				epicenter[0] - radius, epicenter[1] - radius,
				epicenter[0] + radius, epicenter[1] + radius
			)
			# collect all players in the bounding box for the blast
			subjects = set()
			for region in util.generate_wrapped_bounds((0, 0, self.width, self.height), bounds):
				subjects = subjects.union(self.find_players(region))

			# create a wrapped radius to check distance against
			radius = util.WrappedRadius(epicenter, radius, (self.width, self.height))
			# check if subject in blast radius (bounding box possibly selects too many players)
			for subject in subjects:
				# calculate distance to epicenter for all subjects, signal hit if ... hit
				if subject.location in radius:
					# subtract energy equal to charge from subject that was hit
					prev_energy = subject.energy
					subject.energy -= charge
					# emit player hit event
					self.emit_event(
						type = 'player_hit',
						player = subject.name,
						location = subject.location,
						epicenter = epicenter,
						radius = radius,
						charge = charge,
						energy = (prev_energy, subject.energy),
						fatal = subject.energy <= 0.0,
						attacker = player.name,
						attacker_location = player.location,
						attacker_energy = player.energy
					)
					# signal the subject it was hit
					result_signals.append((player.signal_hit, player.name,
							util.angle(radius.distance(subject.location)[1], epicenter),
							charge
					))
					logging.info('player {} hit {} for {} (new energy: {})'.format(player.name, subject.name, charge, subject.energy))
					# check to see if the subject died from this hit
					if subject.energy <= 0.0:
						logging.info("player {} died from {}'s bomb".format(subject.name, player.name))
						result_signals.append(self.player_death(subject))
		return result_signals