def _build(self): ''' self.hidden1 = GraphConvolutionSparse(input_dim=self.input_dim, output_dim=FLAGS.hidden1, adj=self.adj, features_nonzero=self.features_nonzero, act=tf.nn.relu, dropout=self.dropout, logging=self.logging)(self.inputs) ''' self.hidden1 = GraphConvolution(input_dim=self.input_dim, output_dim=FLAGS.hidden1, adj=self.adj, act=tf.nn.relu, dropout=self.dropout, logging=self.logging)(self.inputs) self.embeddings = GraphConvolution(input_dim=FLAGS.hidden1, output_dim=FLAGS.hidden2, adj=self.adj, act=lambda x: x, dropout=self.dropout, logging=self.logging)(self.hidden1) self.z_mean = self.embeddings self.reconstructions = InnerProductDecoder(input_dim=FLAGS.hidden2, act=lambda x: x, logging=self.logging)( self.embeddings)
def _build(self): ''' self.hidden1 = GraphConvolutionSparse(input_dim=self.input_dim, output_dim=FLAGS.hidden1, adj=self.adj, features_nonzero=self.features_nonzero, act=tf.nn.relu, dropout=self.dropout, logging=self.logging)(self.inputs) ''' self.hidden1 = GraphConvolution(input_dim=self.input_dim, output_dim=FLAGS.hidden1, adj=self.adj, act=tf.nn.relu, dropout=self.dropout, logging=self.logging)(self.inputs) self.z_mean = GraphConvolution(input_dim=FLAGS.hidden1, output_dim=FLAGS.hidden2, adj=self.adj, act=lambda x: x, dropout=self.dropout, logging=self.logging)(self.hidden1) self.z_log_std = GraphConvolution(input_dim=FLAGS.hidden1, output_dim=FLAGS.hidden2, adj=self.adj, act=lambda x: x, dropout=self.dropout, logging=self.logging)(self.hidden1) self.z = self.z_mean + tf.random_normal([ self.n_samples, FLAGS.hidden2 ]) * tf.exp(self.z_log_std) # element-wise self.reconstructions = InnerProductDecoder( input_dim=FLAGS.hidden2, act=lambda x: x, # act=tf.nn.relu, logging=self.logging)(self.z)