def setup_mag_group(log_drive, backup_drive, error_drive, webplot_drive): # Bartington Mag690-100 outputs 100 mV/uT = 0.01 V/mG so 100 mG/V, 100 uG/mV mag_x = logger.Channel(hard_port=101, chan_name='Mag X', conv_func=lambda v: v * 100) mag_y = logger.Channel(hard_port=102, chan_name='Mag Y', conv_func=lambda v: v * 100) mag_z = logger.Channel(hard_port=103, chan_name='Mag Z', conv_func=lambda v: v * 100) mag_group = logger.SaveGroup([mag_x, mag_y, mag_z], group_name='MagField', quiet=True, log_drive=Path(log_drive, 'MagField'), backup_drive=Path(backup_drive, 'MagField'), error_drive=error_drive, webplot_drive=webplot_drive) mag_loader = mag_group.make_loader() mag_plotter = PlotWindow(mag_loader, save_path=webplot_drive, ylabel='Magnetic Field', units_label='(mG)', plot_mode='multiplot') return mag_group, mag_plotter
def setup_temperature_group(log_drive, backup_drive, error_drive, webplot_drive): # Omega temperature converters readout 1 degree per mV. temp_exp_cloud = logger.Channel(hard_port=108, chan_name='Temp_exp_cloud', conv_func=lambda t: t, init_cmds_template=logger.Keithley.thrmstr_cmds) temp_exp_table = logger.Channel(hard_port=111, chan_name='Temp_exp_table', conv_func=lambda t: t, init_cmds_template=logger.Keithley.thrmstr_cmds) temp_laser_table = logger.Channel(hard_port=113, chan_name='Temp_laser_table', conv_func=lambda t: t, init_cmds_template=logger.Keithley.thrmstr_cmds) temp_group = logger.SaveGroup([temp_exp_cloud, temp_exp_table, temp_laser_table], group_name='LabTemp', quiet=True, log_drive=Path(log_drive, 'LabTemp'), backup_drive=Path(backup_drive, 'LabTemp'), error_drive=error_drive, webplot_drive=webplot_drive) temp_loader = temp_group.make_loader() temp_plotter = PlotWindow(temp_loader, save_path=webplot_drive, ylabel='Temperature', units_label=r'($^{\circ}C$)') return temp_group, temp_plotter
def setup_ion_gauge_group(log_drive, backup_drive, error_drive, webplot_drive): """ Terranova ion gauge controller reads out a pseudo-logarithmic voltage. It is 0.5 volts per decade and has an offset. The Terranova manual expresses this in a very confusing way that makes it difficult to determine the offset. There is a write up in onenote and on the server about it. The data saved here is Log10(P/P0). The actual pressures (1e-10 level) are too high of precision to be straightforwardly stored in the .csv. """ ion_gauge = logger.Channel(hard_port=106, chan_name='IonGauge', conv_func=lambda v: (v - 5) / 0.5) ion_gauge_group = logger.SaveGroup([ion_gauge], group_name='IonGauge', quiet=True, log_drive=Path(log_drive, 'IonGauge'), backup_drive=Path(backup_drive, 'IonGauge'), error_drive=error_drive, webplot_drive=webplot_drive) ion_gauge_loader = ion_gauge_group.make_loader() ion_gauge_plotter = PlotWindow(ion_gauge_loader, save_path=webplot_drive, conv_func=(lambda x: 10 ** x), ylabel='Ion Gauge Pressure', units_label='(torr)', yscale='log') return ion_gauge_group, ion_gauge_plotter
def setup_ion_pump_group(log_drive, backup_drive, error_drive, webplot_drive): """ Gamma ion pump controller outputs a logarithmic voltage which is related to either the measured pressure or current of the ion pump. Now it is configured to give a logarithmic reading of the current. The offset is adjustable and set to 10 volts. This means that a current 1 A would register as 10 volts and 1e-8 A (10 nA) would register as 2V. The data saved here is Log10(I/I0). """ ion_pump = logger.Channel(hard_port=104, chan_name='IonPump', conv_func=lambda v: (v - 10)) ion_pump_group = logger.SaveGroup([ion_pump], group_name='IonPump', quiet=True, log_drive=Path(log_drive, 'IonPump'), backup_drive=Path(backup_drive, 'IonPump'), error_drive=error_drive, webplot_drive=webplot_drive) ion_pump_loader = ion_pump_group.make_loader() def curr2press(curr): # formula given in ion pump controller to convert current (expressed in nA) to pressure (in torr) return 0.066 * curr * 10 ** -9 * 5600 / 7000 / 70 ion_pump_plotter = PlotWindow(ion_pump_loader, save_path=webplot_drive, conv_func=(lambda x: 10 ** x * 1e9), ylabel='Ion Pump Current', units_label='(nA)', twinx_on=True, twinx_func=curr2press, twinx_label='Pressure (torr)') return ion_pump_group, ion_pump_plotter
import logger as logger import numpy as np import datetime import time from pathlib import Path keithley_logger_temp_path = Path('C:/', 'Users', 'Justin', 'Desktop', 'Working', 'Code', 'Keithley Logger Work') log_drive = Path(keithley_logger_temp_path, 'Log Drive') backup_drive = Path(keithley_logger_temp_path, 'Backup Drive') error_drive = Path(keithley_logger_temp_path, 'Error Drive') webplot_drive = Path(keithley_logger_temp_path, 'Webplot Drive') fake_data_channel = logger.Channel(hard_port=101, chan_name='fake data') fake_data_group = logger.SaveGroup([fake_data_channel], group_name='Fake Data', quiet=True, log_drive=Path(log_drive, 'Fake Data'), backup_drive=Path(backup_drive, 'Fake Data'), error_drive=error_drive, webplot_drive=webplot_drive) fake_magx_channel = logger.Channel(hard_port=101, chan_name='magx fake') fake_magy_channel = logger.Channel(hard_port=102, chan_name='magy fake') fake_magz_channel = logger.Channel(hard_port=103, chan_name='magz fake') mag_data_fake_group = logger.SaveGroup( [fake_magx_channel, fake_magy_channel, fake_magz_channel], group_name='Mag Data Fake', quiet=True, log_drive=Path(log_drive, 'Mag Data Fake'),