Example #1
0
def learn(sat_images, label_images, configuration, SEED, FLAGS,
          save_model_filepath):
    # Getting the data on which we are going to train

    data, labels = preparing_data(sat_images, label_images,
                                  configuration.ROTATE_IMAGES,
                                  configuration.ROTATED_IMG,
                                  configuration.IMG_PATCH_SIZE,
                                  configuration.IMG_BORDER)

    # Seperating our data in three distinct sets (taining, validation, testing)
    # and normalization
    (train_set, valid_set, test_set, means,
     stds) = separate_set(data, labels, configuration.VALIDATION_TRAIN_PERC,
                          configuration.VALIDATION_VAL_PERC)
    # Balancing data
    train_set = img_help.balance_data(train_set[0], train_set[1])

    print(
        "******************************************************************************"
    )
    print(
        "\nWe will train on", len(train_set[0]), "patches of size",
        str(configuration.IMG_TOTAL_SIZE) + "x" +
        str(configuration.IMG_TOTAL_SIZE))

    print("\nInitializing tensorflow graphs for training and validating")

    num_epochs = configuration.NUM_EPOCHS

    # Initialization of placeholders for data and labels
    train_data_node = tf.placeholder(
        tf.float32,
        shape=(configuration.BATCH_SIZE, configuration.IMG_TOTAL_SIZE,
               configuration.IMG_TOTAL_SIZE, configuration.NUM_CHANNELS))

    train_label_node = tf.placeholder(tf.float32,
                                      shape=(configuration.BATCH_SIZE,
                                             configuration.NUM_LABELS))

    eval_data_node = tf.placeholder(tf.float32,
                                    shape=(None, configuration.IMG_TOTAL_SIZE,
                                           configuration.IMG_TOTAL_SIZE,
                                           configuration.NUM_CHANNELS))

    eval_label_node = tf.placeholder(tf.float32,
                                     shape=(None, configuration.NUM_LABELS))

    # Define the parameters of the convolutional layers
    conv_params, last_depth = params_conv_layers(configuration.CONV_ARCH,
                                                 configuration.CONV_DEPTH,
                                                 configuration.NUM_CHANNELS,
                                                 SEED)

    pool_fact = 2**len(configuration.CONV_ARCH)

    if configuration.IMG_TOTAL_SIZE % pool_fact != 0:
        raise "not dividable by pool fact " + str(
            configuration.IMG_TOTAL_SIZE) + " / " + str(pool_fact)

    size = int(configuration.IMG_TOTAL_SIZE / pool_fact *
               configuration.IMG_TOTAL_SIZE / pool_fact * last_depth)

    fc_params = params_fc_layers(configuration.FC_ARCH, configuration.FC_DEPTH,
                                 size, configuration.NUM_LABELS, SEED)

    # Definition of the complete cnn model.
    def model(data, train=False):

        # convolution layers
        conv_end = init_conv_layers(configuration.CONV_ARCH, conv_params, data)

        # Reshape the feature map cuboid into a 2D matrix to feed it to the
        # fully connected layers.
        conv_end_shape = conv_end.get_shape().as_list()

        reshape = tf.reshape(
            conv_end,
            [-1, conv_end_shape[1] * conv_end_shape[2] * conv_end_shape[3]])

        out = init_fc_layers(configuration.FC_ARCH, fc_params, reshape, train,
                             configuration.KEEP_DROPOUT, SEED)

        return out

    logits = model(train_data_node, True)

    # Computes the probability error for each prediction
    loss = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(logits, train_label_node))
    tf.summary.scalar('loss', loss)

    # L2 regularization for the fully connected parameters.
    regularizers = tf.nn.l2_loss(fc_params[0][0]) + tf.nn.l2_loss(
        fc_params[0][1])
    for params in fc_params[1:]:
        regularizers += tf.nn.l2_loss(params[0])
        regularizers += tf.nn.l2_loss(params[1])

    # Add the regularization term to the loss.
    loss += 5e-4 * (regularizers)

    # Optimizer: set up a variable that's incremented once per batch and
    # controls the learning rate decay.
    batch = tf.Variable(0)

    # Use adam optimizer as it optimises automatically the learning rate.
    adam_opt = tf.train.AdamOptimizer(configuration.LEARNING_RATE)
    optimizer = adam_opt.minimize(loss, global_step=batch)

    # Predictions for the minibatch, validation set and test set.
    train_prediction_graph = tf.nn.softmax(logits)
    # Compute predictions for validation and test
    correct_predictions_train_graph = tf.equal(
        tf.argmax(train_prediction_graph, 1), tf.argmax(train_label_node, 1))
    # Accuracy for training
    accuracy_train_graph = tf.reduce_mean(
        tf.cast(correct_predictions_train_graph, tf.float32))

    # Validation / Testing set predictions
    eval_predictions_graph = tf.nn.softmax(model(eval_data_node))
    # Compute predictions for validation and test
    eval_correct_predictions_graph = tf.equal(
        tf.argmax(eval_predictions_graph, 1), tf.argmax(eval_label_node, 1))
    # Accuracy computation
    eval_accuracy_graph = tf.reduce_mean(
        tf.cast(eval_correct_predictions_graph, tf.float32))

    # Will be used later when we need to compute the f1 score
    threshold_tf = tf.Variable(0, name="threshold_tf", dtype=tf.float32)

    # Index [0] corresponds to a road, which we will consider as positive therefore 1.
    pos_predictions_thresh_graph = tf.cast(
        tf.transpose(eval_predictions_graph)[0] > threshold_tf, tf.int64)
    # Here for the true labels we have the oposite -> 1 is background, road is 0 so we use argmin to reverse that
    true_predictions_graph = tf.argmin(eval_label_node, 1)
    # Here we have a boolean array with true values where instances of the prediction correspond to the labels.
    correct_predictions_thresh = tf.equal(pos_predictions_thresh_graph,
                                          true_predictions_graph)

    # Add ops to save and restore all the variables.
    saver = tf.train.Saver()

    # initialise all varibales operation
    init = tf.global_variables_initializer()

    s = tf.Session()

    if configuration.RESTORE_MODEL:
        # Restore variables from disk.
        if not os.path.exists(save_model_filepath + ".index"):
            raise ValueError("model not found : " + save_model_filepath)
        saver.restore(s, save_model_filepath)
        print("Model restored from :", save_model_filepath)
    else:
        # run initialisation of variables
        s.run(init)
        print('\nInitialized!')

        train_size = len(train_set[0])

        # Loop through training steps.
        print('\nTotal number of epochs for training :', num_epochs)
        print('Total number of steps for epoch :',
              int(train_size / configuration.BATCH_SIZE))
        print('Total number of steps :',
              num_epochs * int(train_size / configuration.BATCH_SIZE))
        print("\n")
        print(
            "******************************************************************************"
        )
        print("                                    Training")
        print(
            "******************************************************************************"
        )

        try:
            batch_size = configuration.BATCH_SIZE
            for epoch in range(num_epochs):
                print(
                    "\n******************************************************************************"
                )
                print("training for epoch :", epoch + 1, "out of", num_epochs,
                      "epochs")

                perm_idx = np.random.permutation(train_size)
                batch_bar = progressbar.ProgressBar(
                    max_value=int(train_size / configuration.BATCH_SIZE))
                for step in range(int(train_size / configuration.BATCH_SIZE)):
                    batch_idx = perm_idx[step * batch_size:(step + 1) *
                                         batch_size]

                    # Compute the offset of the current minibatch in the data.
                    # Note that we could use better randomization across epochs.
                    batch_data = train_set[0][batch_idx]
                    batch_labels = train_set[1][batch_idx]

                    # This dictionary maps the batch data (as a np array) to the
                    # node in the graph is should be fed to.
                    feed_dict = {
                        train_data_node: batch_data,
                        train_label_node: batch_labels
                    }

                    if step % configuration.RECORDING_STEP == 0:
                        _, l = s.run([optimizer, loss], feed_dict=feed_dict)

                        print(
                            "\ncomputing intermediate accuracy and loss at step",
                            step)
                        print("computing train accuracy")
                        acc = batch_sum(s, eval_accuracy_graph, train_set,
                                        configuration.EVAL_BATCH_SIZE,
                                        eval_data_node, eval_label_node)
                        train_acc = acc / int(
                            np.ceil(
                                len(train_set[0]) /
                                configuration.EVAL_BATCH_SIZE))
                        logger.append_log("Accuracy_training", train_acc)

                        print("computing validation accuracy")
                        acc = batch_sum(s, eval_accuracy_graph, valid_set,
                                        configuration.EVAL_BATCH_SIZE,
                                        eval_data_node, eval_label_node)
                        valid_acc = acc / int(
                            np.ceil(
                                len(valid_set[0]) /
                                configuration.EVAL_BATCH_SIZE))
                        logger.append_log("Accuracy_validation", valid_acc)

                        logger.append_log("Loss_taining", l)

                        print('\n%.2f' %
                              (float(step) * configuration.BATCH_SIZE /
                               train_size) + '% of Epoch ' + str(epoch + 1))
                        print("loss :", l)

                        print("training set accuracy :", train_acc)
                        print("validation set accuracy :", valid_acc)

                        saver.save(s, FLAGS.train_dir + "/model.ckpt")

                        print("\nContinuing training steps")

                        sys.stdout.flush()
                    else:
                        # Run the graph and fetch some of the nodes.
                        batch_bar.update(step)
                        _, l, predictions_train = s.run(
                            [optimizer, loss, train_prediction_graph],
                            feed_dict=feed_dict)

                batch_bar.finish()

                # What do here ? nothing normally as done at beginning of each epoch
        except KeyboardInterrupt:
            print("Interrupted at epoch ", epoch + 1)
            print("Restoring model from last evaluation")
            saver.restore(s, FLAGS.train_dir + "/model.ckpt")
            pass

        logger.set_log("Epoch_stop", epoch + 1)

    print(
        "\n******************************************************************************"
    )
    print("Finished training")

    print("\nScoring on validation set")

    acc = batch_sum(s, eval_accuracy_graph, valid_set,
                    configuration.EVAL_BATCH_SIZE, eval_data_node,
                    eval_label_node)
    accuracy = acc / int(
        np.ceil(len(valid_set[0]) / configuration.EVAL_BATCH_SIZE))
    logger.append_log("Accuracy_validation", accuracy)

    print("Accuracy rating is :", accuracy)

    print("\nScoring on testing set")

    acc = batch_sum(s, eval_accuracy_graph, test_set,
                    configuration.EVAL_BATCH_SIZE, eval_data_node,
                    eval_label_node)
    accuracy = acc / int(
        np.ceil(len(test_set[0]) / configuration.EVAL_BATCH_SIZE))
    logger.set_log("Accuracy_test", accuracy)

    print("Accuracy rating is :", accuracy)

    max_thresh = 0.5  # base threshold in case we don't want to fine tune it.

    if configuration.OPTI_F1:
        print(
            "\n******************************************************************************"
        )
        print("Finding best f1_score with different thresholds")
        # Computing F1 score from predictions with different thresholds
        thresh_start = 0
        thresh_end = 1
        thresh_steps = 10
        theta_thresh = configuration.THETA_THRESH

        diff_thresh = 1
        while (diff_thresh > theta_thresh):
            print("\nTesting for threshold between", thresh_start, "and",
                  thresh_end)
            threshs = np.linspace(thresh_start, thresh_end, thresh_steps)
            f1_scores = []

            for thresh in threshs:
                s.run(threshold_tf.assign(thresh))

                print("\nComputing F1-score with threshold :", thresh)

                f1_score = compute_f1_tf(s, pos_predictions_thresh_graph,
                                         correct_predictions_thresh, valid_set,
                                         configuration.EVAL_BATCH_SIZE,
                                         eval_data_node, eval_label_node)

                f1_scores.append(f1_score)

                print("F1-score :", f1_score)

            # Output test with best Threshold
            logger.append_log("F1-score_validation", f1_scores)
            logger.append_log("F1-score_threshs_validation", list(threshs))
            idx_max_thresh = np.argmax(f1_scores)
            diff_thresh = f1_scores[idx_max_thresh] - f1_scores[0]
            thresh_start = threshs[max(idx_max_thresh - 1, 0)]
            thresh_end = threshs[min(idx_max_thresh + 1, thresh_steps - 1)]

            print("\nDifference :", diff_thresh)

        max_thresh = threshs[idx_max_thresh]

        print("Best threshold found with confidence", theta_thresh, ":",
              max_thresh)

    # Test set f1_score

    s.run(threshold_tf.assign(max_thresh))

    print("\nTest set F1-score with best threshold :", max_thresh)

    f1_score = compute_f1_tf(s, pos_predictions_thresh_graph,
                             correct_predictions_thresh, test_set,
                             configuration.EVAL_BATCH_SIZE, eval_data_node,
                             eval_label_node)

    logger.set_log("F1-score_test", f1_score)

    print("F1-score:", f1_score)

    if not configuration.RESTORE_MODEL:
        print("\nSaving our model")
        saver.save(s, save_model_filepath)

    logger.save_log()

    return s, model, means, stds, max_thresh
Example #2
0
def start_ekimu_check(ekimu_site_url, ekimu_site_name, logger, connection, cursor):
	# URLの存在チェック
	# site_url = u'http://wave.pref.wakayama.lg.jp/ekimu2/'
	try:
		f = urllib2.urlopen(ekimu_site_url)
		logger.set_log(ekimu_site_url)
		f.close()
	except urllib2.HTTPError:
		logger.set_log("NotFound:" + ekimu_site_url)
		return False

	# 処理開始時間
	process_start = datetime.datetime.now()
	# 案件件数
	count_tenders = 0;

	# 登録番号の取得
	sql = u'select max(registration_no) from t_tenders;'
	cursor.execute(sql)
	record =  cursor.fetchone()
	max_registration_no = record[0]
	if max_registration_no == None:
		max_registration_no = 0
	registration_no = max_registration_no + 1
	# print(registration_no)

	# 案件情報取得のためのパラメータ(リスト)
	params = []

	# 現在公開分 => 一般競争入札
	param = MainParam()
	param.keishu_cd = u'1'
	param.public_flag = u'0'
	params.append(param)

	# 現在公開分 => 簡易公開調達
	param = MainParam()
	param.keishu_cd = u'2'
	param.public_flag = u'0'
	params.append(param)

	# 既に終了分 => 一般競争入札
	param = MainParam()
	param.keishu_cd = u'1'
	param.public_flag = u'1'
	params.append(param)

	# 既に終了分 => 簡易公開調達
	param = MainParam()
	param.keishu_cd = u'2'
	param.public_flag = u'1'
	params.append(param)



	for param in params:
		# HTMLを取得
		# html_anken_page.py より
		html_page = html_anken_page.HtmlAnkenPage()
		logger.set_log('class HtmlAnkenPage')

		html_page.set_keishu_cd(param.keishu_cd)
		html_page.set_public_flag(param.public_flag)
		html_page.get_html(ekimu_site_url)
		# HTMLから案件情報ページURLリストを取得
		html_page.get_page_list(ekimu_site_url)
		# 案件情報ページURLリストから案件情報のリストを取得
		for page in html_page.page_list:
			logger.set_log(page)
			html_list = html_anken_list.HtmlAnkenList(page)

			html_list.get_anken_list(ekimu_site_url)
			for url in html_list.anken_url_list:
				logger.set_log(url)

				count_tenders = count_tenders + 1

				html_disp = html_anken_disp.HtmlAnkenDisp()

				html_disp.set_url(url, ekimu_site_url)
				# 案件情報を取得
				html_disp.get_anken()

				# テーブル:t_tenders の更新
				t_tenders = dao_t_tenders.DaoTTenders()
				t_tenders.make_sql_exist()
				sql_params = []
				sql_params.append(html_disp.anken.anken_no)
				cursor = t_tenders.exec_sql_params(connection, cursor, sql_params)
				if 0 == cursor.rowcount:
					# INSERT t_tenders
					t_tenders.make_sql_select_max_id()
					cursor = t_tenders.exec_sql(connection, cursor)
					record =  cursor.fetchone()
					max_id = record[0]
					if max_id == None:
						max_id = 0
					t_tenders.make_sql_insert()
					sql_params = []
					id = max_id + 1
					sql_params.append(id)
					sql_params.append(html_disp.anken.nyusatsu_system)
					sql_params.append(html_disp.anken.nyusatsu_type)
					sql_params.append(html_disp.anken.anken_no)
					sql_params.append(html_disp.anken.anken_url)
					sql_params.append(html_disp.anken.anken_name)
					sql_params.append(html_disp.anken.keishu_cd)
					sql_params.append(html_disp.anken.keishu_name)
					sql_params.append(html_disp.anken.public_flag)
					sql_params.append(html_disp.anken.company_area)
					sql_params.append(html_disp.anken.anken_open_date)
					sql_params.append(html_disp.anken.anken_close_date)
					sql_params.append(html_disp.anken.tender_date)
					sql_params.append(html_disp.anken.tender_place)
					sql_params.append(html_disp.anken.limit_date)
					sql_params.append(html_disp.anken.gyoumu_kbn_1)
					sql_params.append(html_disp.anken.gyoumu_kbn_2)
					sql_params.append(html_disp.anken.kasitu_name)
					sql_params.append(html_disp.anken.tanto_name)
					sql_params.append(html_disp.anken.notes)
					sql_params.append(html_disp.anken.result_open_date)
					sql_params.append(html_disp.anken.result_close_date)
					sql_params.append(html_disp.anken.raku_name)
					sql_params.append(html_disp.anken.price)
					sql_params.append(registration_no)
					sql_params.append(ekimu_site_name)
					sql_params.append(html_disp.anken.attached_file_1)
					sql_params.append(html_disp.anken.attached_file_2)
					sql_params.append(html_disp.anken.attached_file_3)

					t_tenders.exec_sql_params(connection, cursor, sql_params)
					# print "insert"
				else:
					# UPDATE t_tenders
					t_tenders.make_sql_update()

					sql_params = []
					sql_params.append(html_disp.anken.nyusatsu_system)
					sql_params.append(html_disp.anken.nyusatsu_type)
					sql_params.append(html_disp.anken.anken_url)
					sql_params.append(html_disp.anken.anken_name)
					sql_params.append(html_disp.anken.keishu_cd)
					sql_params.append(html_disp.anken.keishu_name)
					sql_params.append(html_disp.anken.public_flag)
					sql_params.append(html_disp.anken.company_area)
					sql_params.append(html_disp.anken.anken_open_date)
					sql_params.append(html_disp.anken.anken_close_date)
					sql_params.append(html_disp.anken.tender_date)
					sql_params.append(html_disp.anken.tender_place)
					sql_params.append(html_disp.anken.limit_date)
					sql_params.append(html_disp.anken.gyoumu_kbn_1)
					sql_params.append(html_disp.anken.gyoumu_kbn_2)
					sql_params.append(html_disp.anken.kasitu_name)
					sql_params.append(html_disp.anken.tanto_name)
					sql_params.append(html_disp.anken.notes)
					sql_params.append(html_disp.anken.result_open_date)
					sql_params.append(html_disp.anken.result_close_date)
					sql_params.append(html_disp.anken.raku_name)
					sql_params.append(html_disp.anken.price)
					sql_params.append(registration_no)
					sql_params.append(ekimu_site_name)
					sql_params.append(html_disp.anken.attached_file_1)
					sql_params.append(html_disp.anken.attached_file_2)
					sql_params.append(html_disp.anken.attached_file_3)
					sql_params.append(html_disp.anken.anken_no)

					t_tenders.exec_sql_params(connection, cursor, sql_params)
					# print util.clean_string(t_tenders.get_sql())
					# print cursor.query.decode('utf-8')
					# logger.set_log(cursor.query.decode('utf-8'))
					# logger.set_log(util.clean_string(cursor.query.encode('utf-8')))
					# print cursor.query
					# print "update"

				# テーブル:j_nyusatsu の更新
				# テーブルがでかくなりすぎた
				# この処理はいらないかも
				# j_nyusatsu = dao_j_nyusatsu.DaoJNyusatsu()
				# j_nyusatsu.make_sql_select_max_id()
				# cursor = j_nyusatsu.exec_sql(connection, cursor)
				# record =  cursor.fetchone()
				# max_id = record[0]
				# if max_id == None:
				# 	max_id = 0
				# # print max_id
				# 
				# j_nyusatsu.make_sql_insert()
				# 
				# sql_params = []
				# id = max_id + 1
				# 
				# # id,
				# sql_params.append(id)
				# # nyusatsu_system,
				# sql_params.append(html_disp.anken.nyusatsu_system)
				# # nyusatsu_type,
				# sql_params.append(html_disp.anken.nyusatsu_type)
				# # anken_no,
				# sql_params.append(html_disp.anken.anken_no)
				# # anken_url,
				# sql_params.append(html_disp.anken.anken_url)
				# # anken_name,
				# sql_params.append(html_disp.anken.anken_name)
				# # keishu_cd,
				# sql_params.append(html_disp.anken.keishu_cd)
				# # keishu_name,
				# sql_params.append(html_disp.anken.keishu_name)
				# # public_flag,
				# sql_params.append(html_disp.anken.public_flag)
				# # company_area,
				# sql_params.append(html_disp.anken.company_area)
				# # anken_open_date,
				# sql_params.append(html_disp.anken.anken_open_date)
				# # anken_close_date,
				# sql_params.append(html_disp.anken.anken_close_date)
				# # tender_date,
				# sql_params.append(html_disp.anken.tender_date)
				# # tender_place,
				# sql_params.append(html_disp.anken.tender_place)
				# # limit_date,
				# sql_params.append(html_disp.anken.limit_date)
				# # gyoumu_kbn_1,
				# sql_params.append(html_disp.anken.gyoumu_kbn_1)
				# # gyoumu_kbn_2,
				# sql_params.append(html_disp.anken.gyoumu_kbn_2)
				# # kasitu_name,
				# sql_params.append(html_disp.anken.kasitu_name)
				# # tanto_name,
				# sql_params.append(html_disp.anken.tanto_name)
				# # notes,
				# sql_params.append(html_disp.anken.notes)
				# # result_open_date,
				# sql_params.append(html_disp.anken.result_open_date)
				# # result_close_date,
				# sql_params.append(html_disp.anken.result_close_date)
				# # raku_name,
				# sql_params.append(html_disp.anken.raku_name)
				# # price,
				# sql_params.append(html_disp.anken.price)
				# # 登録番号
				# sql_params.append(registration_no)
				# # サイト名
				# sql_params.append(config.SITE_NAME)
				#
				# j_nyusatsu.exec_sql_params(connection, cursor, sql_params)

	# 処理終了時間
	process_end = datetime.datetime.now()
	# 処理時間(秒)
	process_seconds = (process_end - process_start).seconds

	# テーブル:j_histories の更新
	j_histories = dao_j_histories.DaoJHistories()
	j_histories.make_sql_insert()
	sql_params = []
	sql_params.append(process_start)
	sql_params.append(process_end)
	sql_params.append(process_seconds)
	sql_params.append(count_tenders)
	j_histories.exec_sql_params(connection, cursor, sql_params)
    # pg_connectin 作成
    import dao_pg_connection
    pg_connection = dao_pg_connection.PgConnection()
    pg_connection.set_pg_connection_open(logger)
    connection = pg_connection.get_pg_connection()
    cursor = connection.cursor()

    # インスタンス生成
    dao_t_nyusatsu = DaoTNyusatsu()

    # テーブルの初期化SQL 生成
    dao_t_nyusatsu.make_sql_delete()

    # sqlをlogに書き出す
    logger.set_log(dao_t_nyusatsu.get_sql())

    # sql実行
    cursor = dao_t_nyusatsu.exec_sql(connection, cursor)

    # Max_id取得用SQL 生成
    dao_t_nyusatsu.make_sql_select_max_id()

    # sqlをlogに書き出す
    logger.set_log(dao_t_nyusatsu.get_sql())

    # sql実行
    cursor = dao_t_nyusatsu.exec_sql(connection, cursor)
    record = cursor.fetchone()
    max_id = record[0]
    if max_id == None:
Example #4
0
if(not exist_log_dir):
	os.mkdir(log_dir_path)
	os.chmod(log_dir_path, 0777)

log_file_path = log_dir_path + "access_log_" + datetime.datetime.now().strftime("%Y-%m-%d") + ".log"
#ログファイルの存在チェック
exist_log_file = os.path.exists(log_file_path)
if(not exist_log_file):
	# 無ければ作る
	f = open(log_file_path, 'w')
	# パーミッションを変更
	os.chmod(log_file_path, 0777)
	f.close()

logger = logger.Logger(log_file_path)
logger.set_log(u'start')

logger.set_log(u'DB HOST : ' + config.DB_HOST)
logger.set_log(u'DB NAME : ' + config.DB_NAME)
logger.set_log(u'SITE URL : ' + config.SITE_URL)
logger.set_log(u'LOG DIR : ' + config.LOG_FILE_DIR_PATH)

# ### 各テーブルとその詳細
#
# j_histories
# 更新履歴
#
# j_nyusatsu
# 役務入札案件のジャーナル
# cronが走るたびに表示されている案件のレコードが新規に追加される
# 登録番号(1回の登録処理で登録された案件で共通)
	import dao_pg_connection
	pg_connection = dao_pg_connection.PgConnection()
	pg_connection.set_pg_connection_open(logger)
	connection = pg_connection.get_pg_connection()
	cursor = connection.cursor()

	# テスト用案件番号
	anken_no = "560700-H2503081217-21"
	sql_params = []

	# インスタンス生成
	dao_t_tenders = DaoTTenders()

	# レコードの存在チェック
	dao_t_tenders.make_sql_exist()
	logger.set_log(dao_t_tenders.get_sql())

	sql_params.append(anken_no)
	cursor = dao_t_tenders.exec_sql_params(connection, cursor, sql_params)

	logger.set_log(str(cursor.rowcount))

	if 0 == cursor.rowcount:
		# レコード新規作成

		# Max_id取得用SQL 生成
		dao_t_tenders.make_sql_select_max_id()

		# sqlをlogに書き出す
		logger.set_log(dao_t_tenders.get_sql())