def main(): if args.seed is None: args.seed = random.randint(1, 10000) print("Random Seed: ", args.seed) random.seed(args.seed) torch.manual_seed(args.seed) if args.gpus: torch.cuda.manual_seed_all(args.seed) time_stamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') if args.evaluate: args.results_dir = '/tmp' if args.save is '': args.save = time_stamp save_path = os.path.join(args.results_dir, args.save) if not os.path.exists(save_path): os.makedirs(save_path) if args.gpus is not None: args.gpus = [int(i) for i in args.gpus.split(',')] device = 'cuda:' + str(args.gpus[0]) cudnn.benchmark = True else: device = 'cpu' if args.type == 'float64': dtype = torch.float64 elif args.type == 'float32': dtype = torch.float32 elif args.type == 'float16': dtype = torch.float16 else: raise ValueError('Wrong type!') # TODO int8 model = MobileNet2(input_size=args.input_size, scale=args.scaling) num_parameters = sum([l.nelement() for l in model.parameters()]) print(model) print('number of parameters: {}'.format(num_parameters)) print('FLOPs: {}'.format( flops_benchmark.count_flops(MobileNet2, args.batch_size // len(args.gpus) if args.gpus is not None else args.batch_size, device, dtype, args.input_size, 3, args.scaling))) # define loss function (criterion) and optimizer criterion = torch.nn.CrossEntropyLoss() if args.gpus is not None: model = torch.nn.DataParallel(model, args.gpus) model.to(device=device, dtype=dtype) criterion.to(device=device, dtype=dtype) optimizer = torch.optim.SGD(model.parameters(), args.learning_rate, momentum=args.momentum, weight_decay=args.decay, nesterov=True) best_test = 0 # optionally resume from a checkpoint data = None if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume, map_location=device) args.start_epoch = checkpoint['epoch'] - 1 best_test = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) elif os.path.isdir(args.resume): checkpoint_path = os.path.join(args.resume, 'checkpoint.pth.tar') csv_path = os.path.join(args.resume, 'results.csv') print("=> loading checkpoint '{}'".format(checkpoint_path)) checkpoint = torch.load(checkpoint_path, map_location=device) args.start_epoch = checkpoint['epoch'] - 1 best_test = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch'])) data = [] with open(csv_path) as csvfile: reader = csv.DictReader(csvfile) for row in reader: data.append(row) else: print("=> no checkpoint found at '{}'".format(args.resume)) if args.evaluate: loss, top1, top5 = test(model, criterion, device, dtype) # TODO return csv_logger = CsvLogger(filepath=save_path, data=data) csv_logger.save_params(sys.argv, args) claimed_acc1 = None claimed_acc5 = None if args.input_size in claimed_acc_top1: if args.scaling in claimed_acc_top1[args.input_size]: claimed_acc1 = claimed_acc_top1[args.input_size][args.scaling] claimed_acc5 = claimed_acc_top5[args.input_size][args.scaling] csv_logger.write_text( 'Claimed accuracies are: {:.2f}% top-1, {:.2f}% top-5'.format(claimed_acc1 * 100., claimed_acc5 * 100.)) for epoch in trange(args.start_epoch, args.epochs + 1): if epoch in args.schedule: args.learning_rate *= args.gamma for param_group in optimizer.param_groups: param_group['lr'] = args.learning_rate train_loss, train_accuracy1, train_accuracy5, = train(model, epoch, optimizer, criterion, device, dtype) test_loss, test_accuracy1, test_accuracy5 = test(model, criterion, device, dtype) csv_logger.write({'epoch': epoch + 1, 'val_error1': 1 - test_accuracy1, 'val_error5': 1 - test_accuracy5, 'val_loss': test_loss, 'train_error1': 1 - train_accuracy1, 'train_error5': 1 - train_accuracy5, 'train_loss': train_loss}) save_checkpoint({'epoch': epoch + 1, 'state_dict': model.state_dict(), 'best_prec1': best_test, 'optimizer': optimizer.state_dict()}, test_accuracy1 > best_test, filepath=save_path) csv_logger.plot_progress(claimed_acc1=claimed_acc1, claimed_acc5=claimed_acc5) if test_accuracy1 > best_test: best_test = test_accuracy1 csv_logger.write_text('Best accuracy is {:.2f}% top-1'.format(best_test * 100.))
def main(): torch.manual_seed(1) torch.cuda.manual_seed_all(1) global args, best_prec1 best_prec1 = 0 args = parser.parse_args() time_stamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') if args.evaluate: args.results_dir = '/tmp' if args.save is '': args.save = time_stamp save_path = os.path.join(args.results_dir, args.save) if not os.path.exists(save_path): os.makedirs(save_path) args.noise = not args.no_noise args.quant = not args.no_quantization args.act_quant = not args.no_act_quantization args.quant_edges = not args.no_quant_edges logging.info("saving to %s", save_path) logging.debug("run arguments: %s", args) if args.gpus is not None: args.gpus = [int(i) for i in args.gpus.split(',')] device = 'cuda:' + str(args.gpus[0]) cudnn.benchmark = True else: device = 'cpu' dtype = torch.float32 args.step_setup = None model = models.__dict__[args.model] model_config = { 'scale': args.scale, 'input_size': args.input_size, 'dataset': args.dataset, 'bitwidth': args.bitwidth, 'quantize': args.quant, 'noise': args.noise, 'step': args.step, 'depth': args.depth, 'act_bitwidth': args.act_bitwidth, 'act_quant': args.act_quant, 'quant_edges': args.quant_edges, 'step_setup': args.step_setup, 'quant_epoch_step': args.quant_epoch_step, 'quant_start_stage': args.quant_start_stage, 'normalize': args.no_pre_process_normalize, 'noise_mask': args.noise_mask } if args.model_config is not '': model_config = dict(model_config, **literal_eval(args.model_config)) # create model model = model(**model_config) logging.info("creating model %s", args.model) model_parameters = filter(lambda p: p.requires_grad, model.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) print("number of parameters: ", params) logging.info("created model with configuration: %s", model_config) print(model) data = None checkpoint_epoch = 0 # optionally resume from a checkpoint if args.evaluate: if not os.path.isfile(args.evaluate): parser.error('invalid checkpoint: {}'.format(args.evaluate)) checkpoint = torch.load(args.evaluate, map_location=device) load_model(model, checkpoint) logging.info("loaded checkpoint '%s' (epoch %s)", args.evaluate, checkpoint['epoch']) print("loaded checkpoint {0} (epoch {1})".format( args.evaluate, checkpoint['epoch'])) elif args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume, map_location=device) if not args.start_from_zero: args.start_epoch = checkpoint['epoch'] - 1 best_test = checkpoint['best_prec1'] checkpoint_epoch = checkpoint['epoch'] load_model(model, checkpoint) print("=> loaded checkpoint '{}' (epoch {})".format( args.resume, checkpoint['epoch'])) elif os.path.isdir(args.resume): checkpoint_path = os.path.join(args.resume, 'checkpoint.pth.tar') csv_path = os.path.join(args.resume, 'results.csv') print("=> loading checkpoint '{}'".format(checkpoint_path)) checkpoint = torch.load(checkpoint_path, map_location=device) best_test = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (epoch {})".format( checkpoint_path, checkpoint['epoch'])) data = [] with open(csv_path) as csvfile: reader = csv.DictReader(csvfile) for row in reader: data.append(row) else: print("=> no checkpoint found at '{}'".format(args.resume)) if args.gpus is not None: model = torch.nn.DataParallel( model, [args.gpus[0]] ) # Statistics need to be calculated on single GPU to be consistant with data among multiplr GPUs # Data loading code default_transform = { 'train': get_transform(args.dataset, input_size=args.input_size, augment=True, integer_values=args.quant_dataloader, norm=not args.no_pre_process_normalize), 'eval': get_transform(args.dataset, input_size=args.input_size, augment=False, integer_values=args.quant_dataloader, norm=not args.no_pre_process_normalize) } transform = getattr(model.module, 'input_transform', default_transform) val_data = get_dataset(args.dataset, 'val', transform['eval'], datasets_path=args.datapath) val_loader = torch.utils.data.DataLoader(val_data, batch_size=args.val_batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) train_data = get_dataset(args.dataset, 'train', transform['train'], datasets_path=args.datapath) train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) statistics_train_loader = torch.utils.data.DataLoader( train_data, batch_size=args.act_stats_batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), args.learning_rate, momentum=args.momentum, weight_decay=args.decay, nesterov=True) model, criterion = model.to(device, dtype), criterion.to(device, dtype) if args.clr: scheduler = CyclicLR(optimizer, base_lr=args.min_lr, max_lr=args.max_lr, step_size=args.epochs_per_step * len(train_loader), mode=args.mode) else: scheduler = MultiStepLR(optimizer, milestones=args.schedule, gamma=args.gamma) csv_logger = CsvLogger(filepath=save_path, data=data) csv_logger.save_params(sys.argv, args) csv_logger_training_stats = os.path.join(save_path, 'training_stats.csv') # pre-training activation and parameters statistics calculation #### if check_if_need_to_collect_statistics(model): for layer in model.modules(): if isinstance(layer, actquant.ActQuantBuffers): layer.pre_training_statistics = True # Turn on pre-training activation statistics calculation model.module.statistics_phase = True validate( statistics_train_loader, model, criterion, device, epoch=0, num_of_batches=80, stats_phase=True) # Run validation on training set for statistics model.module.quantize.get_act_max_value_from_pre_calc_stats( list(model.modules())) _ = model.module.quantize.set_weight_basis(list(model.modules()), None) for layer in model.modules(): if isinstance(layer, actquant.ActQuantBuffers): layer.pre_training_statistics = False # Turn off pre-training activation statistics calculation model.module.statistics_phase = False else: # Maximal activation values still need to be derived from loaded stats model.module.quantize.assign_act_clamp_during_val(list( model.modules()), print_clamp_val=True) model.module.quantize.assign_weight_clamp_during_val( list(model.modules()), print_clamp_val=True) # model.module.quantize.get_act_max_value_from_pre_calc_stats(list(model.modules())) if args.gpus is not None: # Return to Multi-GPU after statistics calculations model = torch.nn.DataParallel(model.module, args.gpus) model, criterion = model.to(device, dtype), criterion.to(device, dtype) # pre-training activation statistics calculation #### if args.evaluate: val_loss, val_prec1, val_prec5 = validate(val_loader, model, criterion, device, epoch=0) print("val_prec1: ", val_prec1) return # fast forward to curr stage for i in range(args.quant_start_stage): model.module.switch_stage(0) for epoch in trange(args.start_epoch, args.epochs + 1): if not isinstance(scheduler, CyclicLR): scheduler.step() # scheduler.optimizer = optimizer train_loss, train_prec1, train_prec5 = train( train_loader, model, criterion, device, epoch, optimizer, scheduler, training_stats_logger=csv_logger_training_stats) for layer in model.modules(): if isinstance(layer, actquant.ActQuantBuffers): layer.print_clamp() # evaluate on validation set val_loss, val_prec1, val_prec5 = validate(val_loader, model, criterion, device, epoch) # remember best prec@1 and save checkpoint is_best = val_prec1 > best_prec1 best_prec1 = max(val_prec1, best_prec1) save_checkpoint( { 'epoch': epoch + 1, 'model': args.model, 'config': args.model_config, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'layers_b_dict': model.module. layers_b_dict #TODO this doesn't work for multi gpu - need to del }, is_best, path=save_path) # New type of logging csv_logger.write({ 'epoch': epoch + 1, 'val_error1': 1 - val_prec1, 'val_error5': 1 - val_prec5, 'val_loss': val_loss, 'train_error1': 1 - train_prec1, 'train_error5': 1 - train_prec5, 'train_loss': train_loss }) csv_logger.plot_progress(title=args.model + str(args.depth)) csv_logger.write_text( 'Epoch {}: Best accuracy is {:.2f}% top-1'.format( epoch + 1, best_prec1 * 100.))