async def main(): async def evolution_step(e): e.mutation(attempts=4000) e.crossover(attempts=4000) await e.compute() e.selection(eval_param=0.05, save_n_best=3) logger = FileLogger('logout') iteration, step = 1, 0 the_best_value = 0.0 while step < stop_step: logger(f"Iteration: {iteration}\n") await asyncio.gather(*(evolution_step(e) for e in evolution)) for e in evolution: e.print_info(iter=iteration) cur_best_value = max([e.get_best_protein().value for e in evolution]) if the_best_value < cur_best_value: the_best_value = cur_best_value step = 0 else: step += 1 logger(f"The best value: {the_best_value}\n" f"Step/Stop {step}/{stop_step}\n\n") iteration += 1
def parseUSDaily(code): path = "C:/project/stockdata/UShistory/%s.csv" % code daily = pd.read_csv(path) # only retrieve the needed columns daily = daily[[ 'timestamp', 'volume', 'open', 'high', 'low', 'close', 'chg', 'percent', 'turnoverrate', 'amount', 'pe', 'pb', 'ps', 'pcf', 'market_capital' ]] daily['ts_code'] = code daily['trade_date'] = daily['timestamp'].map( lambda x: time.strftime('%Y/%m/%d', time.localtime(x / 1000))) daily = daily.drop('timestamp', axis=1) # change datatype to float64 daily = daily.replace(to_replace='None', value='0') datatype = { "volume": "int64", "open": "float64", "high": "float64", "low": "float64", "close": "float64", "chg": "float64", "percent": "float64", "turnoverrate": "float64", "amount": "float64", "pe": "float64", "pb": "float64", "ps": "float64", "pcf": "float64", "market_capital": "float64", "ts_code": "object", "trade_date": "object" } daily = daily.astype(datatype) daily = daily.drop_duplicates(['ts_code', 'trade_date']) daily = daily.set_index(['ts_code', 'trade_date']) tableName = "daily" + str(getDBIndex(code)) print(tableName) daily.to_sql(name=tableName, con=usEngine, if_exists="append") FileLogger.info("write data to Database successfully on code: %s" % code)
def process(self, max_size=None, logger=None): if logger is None: logger = FileLogger() im = self.load(max_size) if im is None: logger.result(self.imgpath, {'Error': "Failed to load"}, self.bad_qualities, self.compare) return None remaining = self.measures[:] results = {} # rudimentary runner that only executes ones that have the given requirements while len(remaining) > 0: still_remaining = [] for mod in remaining: # verify prereqs abort = False for prereq in mod.requires_result_from: if prereq not in results: still_remaining.append(mod) abort = True break if abort: print "Failed to meet req for:", self._get_name(mod) continue kwargs = {} for name in mod.requires_result_from: kwargs[name] = results[name] results[self._get_name(mod)] = self.execute(im, mod, kwargs) msg = 'Unresolve dependencies. I have %s to satisfy %s.' % ( ','.join(results.keys()), ','.join(map( lambda x: self._get_name(x) + "("+','.join(x.requires_result_from)+")", remaining)) ) assert len(remaining) != len(still_remaining), msg remaining = still_remaining logger.result(self.imgpath, results, self.bad_qualities, self.compare)
def process(process_dir=None): if process_dir is None: process_dir = [ v for v in globals().values() if isinstance(v, TrainingData) ] logger = MultiLogger( FileLogger(), HtmlLogger(open('output.html', 'w+'), os.path.abspath('thumb'))) max_size = None #(800, 600) for obj in process_dir: if obj.kind == 'good': obj.process(max_size=max_size, logger=logger) for obj in process_dir: if obj.kind == 'bad': obj.process(max_size=max_size, logger=logger)
def process(self, max_size=None, logger=None): if logger is None: logger = FileLogger() im = self.load(max_size) if im is None: logger.result(self.imgpath, {'Error': "Failed to load"}, self.bad_qualities, self.compare) return None remaining = self.measures[:] results = {} # rudimentary runner that only executes ones that have the given requirements while len(remaining) > 0: still_remaining = [] for mod in remaining: # verify prereqs abort = False for prereq in mod.requires_result_from: if prereq not in results: still_remaining.append(mod) abort = True break if abort: print "Failed to meet req for:", self._get_name(mod) continue kwargs = {} for name in mod.requires_result_from: kwargs[name] = results[name] results[self._get_name(mod)] = self.execute(im, mod, kwargs) msg = 'Unresolve dependencies. I have %s to satisfy %s.' % ( ','.join(results.keys()), ','.join( map( lambda x: self._get_name(x) + "(" + ','.join( x.requires_result_from) + ")", remaining))) assert len(remaining) != len(still_remaining), msg remaining = still_remaining logger.result(self.imgpath, results, self.bad_qualities, self.compare)
from flask import Flask, jsonify, abort from config_class import Config from logger import FileLogger, ConsoleLogger from collector import DbHandler config = Config() # get db name from yaml file db_name = config.db['db_name'] file_logger = FileLogger() console_logger = ConsoleLogger() db_handler = DbHandler(db_name=db_name, index_list='') app = Flask(__name__) # get_collections @app.route('/api/indices', methods=['GET']) def get_collections(): return jsonify({'collections': db_handler.get_db_collections()}) # get_by_collection_name @app.route('/api/index/<index>', methods=['GET']) def get_collection_data(index): is_index_exist(index) return jsonify({'results': db_handler.get_collection_data(index)}) # get_last_entry_from_collection @app.route('/api/index/<index>/last', methods=['GET'])
subprocess.check_call(args + [INTERPRETER_AUTODETECTION_FLAG], stdout=stdout, stderr=STDOUT) except CalledProcessError: continue if INTERPRETER_AUTODETECTION_VERBOSE_FLAG in sys.argv or ALL_AUTODETECTION_VERSION_FLAG in sys.argv: print('Re-launching using command line: ' + ' '.join(args)) os.execv(args[0], args) print( 'Error: One or more required python libraries have not been installed: ' + str(e)) sys.exit(1) if not autodetecting: logger.register(ConsoleLogger()) logger.register(FileLogger()) if EXECUTABLE_AUTODETECTION_VERSION_FLAG in sys.argv or ALL_AUTODETECTION_VERSION_FLAG in sys.argv: import detect detect.VERBOSE_DETECT = True try: PaladinLinuxClient().run( mask_exceptions=(not EXCEPTION_BACKTRACE_FLAG in sys.argv and not ALL_EXCEPTIONS_BACKTRACE_FLAG in sys.argv), handle_errors=(not ALL_EXCEPTIONS_BACKTRACE_FLAG in sys.argv)) except KeyboardInterrupt as e: print('') sys.exit(1) finally: logger.shutdown()
print(tableName) daily.to_sql(name=tableName, con=usEngine, if_exists="append") FileLogger.info("write data to Database successfully on code: %s" % code) def getDBIndex(code): sum = 0 for i in range(0, len(code)): sum = sum + ord(code[i]) index = sum % 30 return index if __name__ == "__main__": # 查询语句:select ts_code from usstock.stocklist; stockdf = pd.read_csv("C:/project/Tushare/usstock/code.csv") errordf = pd.read_csv("C:/project/Tushare/usstock/get_error_ts_code.csv") errorList = errordf['ts_code'].to_numpy() stockList = stockdf[~stockdf['ts_code'].isin(errorList)] stockList = stockList['ts_code'].to_numpy() for code in stockList: FileLogger.info("running on code: %s" % code) try: parseUSDaily(code) except Exception as ex: FileLogger.error(ex) FileLogger.error("write data to Database error on code: %s" % code) time.sleep(1)
help='how long to wait before shutting down on error') parser.add_argument('--short-epoch', action='store_true', help='make epochs short (for debugging)') return parser cudnn.benchmark = True args = get_parser().parse_args() # Only want master rank logging to tensorboard is_master = (not args.distributed) or (dist_utils.env_rank() == 0) is_rank0 = args.local_rank == 0 tb = TensorboardLogger(args.logdir, is_master=is_master) log = FileLogger(args.logdir, is_master=is_master, is_rank0=is_rank0) def main(): os.system('shutdown -c') # cancel previous shutdown command log.console(args) tb.log('sizes/world', dist_utils.env_world_size()) # need to index validation directory before we start counting the time dataloader.sort_ar(args.data + '/validation') if args.distributed: log.console('Distributed initializing process group') torch.cuda.set_device(args.local_rank) dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
OMPI_COMM_WORLD_LOCAL_RANK = os.environ.get('OMPI_COMM_WORLD_LOCAL_RANK', '-1') IS_CHIEF = (RANK == '0') print( f"*** Debug: {os.uname()[1]} RANK={RANK} local_rank_arg={args.local_rank} LOCAL_RANK={LOCAL_RANK}, OMPI_COMM_WORLD_LOCAL_RANK={OMPI_COMM_WORLD_LOCAL_RANK}, {' '.join(sys.argv)}" ) pp(dict(os.environ)) # Only want master rank logging to tensorboard is_master = os.environ.get('RANK', '0') == '0' # for mpirun the messages are propagated to main machine, so don't log in that case is_rank0 = (args.local_rank == 0) tb = TensorboardLogger(args.logdir, is_master=is_master) log = FileLogger(args.logdir, is_master=is_master, is_rank0=is_rank0) if args.log_all_workers: group_name = args.name run_name = args.name + '-' + os.environ.get("RANK", "0") wandb.init(project='imagenet18', group=group_name, name=run_name) log.console("initializing wandb logging to group " + args.name + " name ") else: if not is_master: os.environ['WANDB_MODE'] = 'dryrun' # all wandb.log are no-op log.console("local-only wandb logging for run " + args.name) wandb.init(project='imagenet18', name=args.name) log.console("initializing logging to run " + args.name) if hasattr(wandb, 'config') and wandb.config is not None: wandb.config['gpus'] = int(os.environ.get('WORLD_SIZE', 1))
running_loss = [0 for num in range(len(mlps))] train_loss = [] print(f"Fold {k + 1}") for epoch in range(epochs): for i, (x_batch, y_batch) in enumerate(train_loader): x_batch, y_batch = x_batch.to(device), y_batch.to(device) optimizer.zero_grad() # N个Model清除梯度 for j, model in enumerate(mlps): y_pred = model.forward(x_batch) loss = criterion(y_pred, y_batch.squeeze().long()) loss.backward() running_loss[j] += loss.item() optimizer.step() # print(f"Epoch {epoch + 1} / {epochs}..") Log.info(f"Epoch {epoch + 1} / {epochs}..") for i in range(len(mlps)): train_loss.append(running_loss[i] / float(len(train))) print(f"{i} - Train loss: {train_loss[i]:.7f}..") Log.info(f"{i} - Train loss: {train_loss[i]:.7f}..") model.eval() pre = [] vote_correct = 0 mlps_correct = [0 for i in range(len(mlps))] test_loss = [0 for i in range(len(mlps))] with torch.no_grad(): for i, (x_batch, y_batch) in enumerate(valid_loader):
log_text_area.pack(fill=BOTH) log_text_area.bind('<Command-a>', select_all_text) # log_text_area.bind('<Control-a>', select_all_text) # ======== Odometry and Measurement Logging Frame ======== frm_pos = Frame(mw, width=511, height=330, highlightbackground='gray', highlightcolor='black', highlightthickness=2) frm_pos.place(x=603, y=430, width=511, height=330) pos_text_area = ScrolledText( master=frm_pos, # wrap=mw.WORD, highlightthickness=0) pos_text_area.configure(state='disabled') pos_text_area.pack(fill=BOTH) pos_text_area.bind('<Command-a>', select_all_text) setup_window_control( mw, Logger(log_text_area), FileLogger(pos_text_area, LOG_FILE), (ax_traj, fig_traj, fig_photo_traj, fig_canvas_agg_traj), (ax_vstream, fig_vstream, fig_photo_vstream, fig_canvas_agg_vstream), NAO_IP, NAO_PORT) setup_menu(mw) mw.mainloop()
def __init__(self, logger=None): self.request_count = 0 self.tasks = {} self.logger = logger or FileLogger() self.logger.log('--------------Server started--------------')