Example #1
0
    def test_axiom_to_pcnf(self):
        a = Symbol.Predicate('A', ['x'])
        b = Symbol.Predicate('B', ['y'])
        c = Symbol.Predicate('C', ['z'])

        # Simple test of disjunction over conjunction
        axi_one = Axiom.Axiom(Quantifier.Universal(['x','y','z'], a | b & c))
        axi_one = axi_one.to_pcnf()
        self.assertEqual('∀(z,y,x)[((A(z) | B(y)) & (A(z) | C(x)))]', repr(axi_one))

        # Test recursive distribution 

        #axi_one = Axiom.Axiom(Quantifier.Universal(['x','y','z'], a | (b & (a | (c & b)))))
        #print(repr(axi_one))
        #self.assertEqual('', repr(axi_one.to_pcnf()))

        # Simple sanity check, it's already FF-PCNF
        axi_two = Axiom.Axiom(Quantifier.Universal(['x','y','z'], (a | b) & c))
        axi_two = axi_two.to_pcnf()
        self.assertEqual('∀(z,y,x)[(C(x) & (A(z) | B(y)))]', repr(axi_two))

        # Sanity check we remove functions
        c = Symbol.Predicate('C', ['z', Symbol.Function('F', ['z'])])
        axi_three = Axiom.Axiom(Quantifier.Universal(['x','y','z'], a | b & c))
        axi_three = axi_three.to_pcnf()
        self.assertEqual('∀(z,y,x,w,v)[((A(z) | ~C(w,v) | F(w,v)) & (A(z) | B(y)))]', repr(axi_three))
Example #2
0
    def test_axiom_connecive_rescoping(self):

        a = Symbol.Predicate('A', ['x'])
        b = Symbol.Predicate('B', ['y'])

        universal = Quantifier.Universal(['x'], a)
        existential = Quantifier.Existential(['y'], b)

        conjunction = universal & existential
        disjunction = universal | existential

        # Ensure we handle single quantifier case
        self.assertEqual(repr((universal & b).rescope()),
                         '∀(x)[(A(x) & B(y))]')
        self.assertEqual(repr((existential & a).rescope()),
                         '∃(y)[(B(y) & A(x))]')
        self.assertEqual(repr((universal | b).rescope()),
                         '∀(x)[(A(x) | B(y))]')
        self.assertEqual(repr((existential | a).rescope()),
                         '∃(y)[(B(y) | A(x))]')

        # Ensure we catch error condition where lookahead is needed
        self.assertRaises(ValueError, (existential | universal).rescope)

        # Ensure that we can promote Universals when a conjunction lives above us
        top = a & disjunction
        self.assertEqual(repr(disjunction.rescope(top)),
                         '∀(x)[∃(y)[(A(x) | B(y))]]')

        # Ensure that we can promote Existentials when a conjunction lives above us
        top = a | conjunction
        self.assertEqual(repr(conjunction.rescope(top)),
                         '∃(y)[∀(x)[(B(y) & A(x))]]')
Example #3
0
    def test_cnf_negation(self):
        '''
        Ensure we can get into conjunctive normal form
        '''

        alpha = Symbol.Predicate('A', ['x'])
        beta = Symbol.Predicate('B', ['y'])
        delta = Symbol.Predicate('D', ['z'])

        s = ~(Quantifier.Universal(['x', 'y', 'z'], (~(alpha | beta) & delta)))
        self.assertEqual(repr(s.push_complete()),
                         "∃(x,y,z)[(A(x) | B(y) | ~D(z))]")
        s = ~(Quantifier.Universal(['x', 'y', 'z'], ~((alpha | beta) & delta)))
        self.assertEqual(repr(s.push_complete()),
                         "∃(x,y,z)[((A(x) | B(y)) & D(z))]")

        s = ~((~alpha | ~beta) & ~delta)
        self.assertEqual(repr(s.push_complete()), "((A(x) & B(y)) | D(z))")

        ## Test to make sure the recursino into nested stuff actually work
        s = (~~~~~~~~~alpha).push_complete()
        self.assertEqual(repr(s), '~A(x)')

        s = (~~~~~~~~alpha).push_complete()
        self.assertEqual(repr(s), 'A(x)')
Example #4
0
    def test_axiom_function_replacement(self):
        f = Symbol.Function('f', ['x'])
        t = Symbol.Function('t', ['y'])
        a = Symbol.Predicate('A', [f])
        b = Symbol.Predicate('B', [f, t])

        axi = Axiom.Axiom(Quantifier.Universal(['x'], a | a & a))
        self.assertEqual(repr(axi), '∀(x)[(A(f(x)) | (A(f(x)) & A(f(x))))]')

        axi = Axiom.Axiom(Quantifier.Universal(['x', 'y'], b))
Example #5
0
    def test_axiom_variable_standardize(self):

        a = Symbol.Predicate('A', ['x'])
        b = Symbol.Predicate('B', ['y', 'x'])
        c = Symbol.Predicate('C', ['a','b','c','d','e','f','g','h','i'])

        axi = Axiom.Axiom(Quantifier.Universal(['x'], a | a & a))
        self.assertEqual(repr(axi.standardize_variables()), '∀(z)[(A(z) | (A(z) & A(z)))]')

        axi = Axiom.Axiom(Quantifier.Universal(['x', 'y'], b))
        self.assertEqual(repr(axi.standardize_variables()), '∀(z,y)[B(y,z)]')

        axi = Axiom.Axiom(Quantifier.Existential(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'], c))
        self.assertEqual(repr(axi.standardize_variables()), '∃(z,y,x,w,v,u,t,s,r)[C(z,y,x,w,v,u,t,s,r)]')
Example #6
0
    def test_cnf_quantifier_simplfy(self):

        alpha = Symbol.Predicate('A', ['x'])
        beta = Symbol.Predicate('B', ['y'])

        uni_one = Quantifier.Universal(['x'], alpha)
        mixer = uni_one | beta
        uni_two = Quantifier.Universal(['y'], mixer)

        uni_nested = Quantifier.Universal(['z'],
                                          alpha & (beta | (alpha & uni_one)))
        self.assertEqual('∀(z)[(A(x) & (B(y) | (A(x) & ∀(x)[A(x)])))]',
                         repr(uni_nested))
        self.assertEqual('∀(z,x)[(A(x) & (B(y) | (A(x) & A(x))))]',
                         repr(uni_nested.simplify()))

        self.assertEqual(repr(uni_two), "∀(y)[(∀(x)[A(x)] | B(y))]")
        self.assertEqual(repr(uni_two.simplify()), "∀(y,x)[(B(y) | A(x))]")
Example #7
0
    def test_axiom_simple_function_replacement(self):
        f = Symbol.Function('f', ['x'])
        t = Symbol.Function('t', ['y'])
        p = Symbol.Function('p', ['z'])
        a = Symbol.Predicate('A', [f, t, p])
        b = Symbol.Predicate('B', [f, t])
        c = Symbol.Predicate('C', [f])


        axi = Axiom.Axiom(Quantifier.Universal(['x', 'y', 'z'], a ))
        self.assertEqual(repr(axi.substitute_functions()), '∀(x,y,z)[∀(f2,t3,p4)[(~A(f2,t3,p4) | (f(x,f2) & t(y,t3) & p(z,p4)))]]')

        axi = Axiom.Axiom(Quantifier.Universal(['x',], ~c ))
        self.assertEqual(repr(axi.substitute_functions()), '∀(x)[~~∀(f5)[(C(f5) | f(x,f5))]]')

        c = Symbol.Predicate('C', [Symbol.Function('f', [Symbol.Function('g', [Symbol.Function('h', ['x'])])])])
        axi = Axiom.Axiom(Quantifier.Universal(['x'], c))
        self.assertEqual(repr(axi.substitute_functions()), '∀(x)[∀(f5,g6,h7)[(~C(f5) | (h(x,h7) & g(h7,g6) & f(g6,f5)))]]')
Example #8
0
    def test_quantifiers(self):

        alpha = Symbol.Predicate('A', ['x'])
        beta = Symbol.Predicate('B', ['y'])
        delta = Symbol.Predicate('D', ['z'])

        uni = Quantifier.Universal(['x', 'y', 'z'], alpha | beta | delta)
        exi = Quantifier.Existential(['x', 'y', 'z'], alpha & beta & delta)

        self.assertEqual(repr(uni), "∀(x,y,z)[(A(x) | B(y) | D(z))]")
        self.assertEqual(repr(exi), "∃(x,y,z)[(A(x) & B(y) & D(z))]")

        self.assertEqual(repr(~uni), "~∀(x,y,z)[(A(x) | B(y) | D(z))]")
        self.assertEqual(repr(~exi), "~∃(x,y,z)[(A(x) & B(y) & D(z))]")

        self.assertEqual(repr((~uni).push()),
                         "∃(x,y,z)[~(A(x) | B(y) | D(z))]")
        self.assertEqual(repr((~exi).push()),
                         "∀(x,y,z)[~(A(x) & B(y) & D(z))]")
Example #9
0
    def test_axiom_quantifier_coalesence(self):

        a = Symbol.Predicate('A', ['x'])
        b = Symbol.Predicate('B', ['y'])

        universal = Quantifier.Universal(['x'], a)
        universal_two = Quantifier.Universal(['y'], b)
        existential = Quantifier.Existential(['y'], b)
        existential_two = Quantifier.Existential(['x'], a)

        # Coalescence over conjunction should merge Universals
        conjunction = universal & universal_two & existential & existential_two
        self.assertEqual(repr(conjunction.coalesce()),
                         '(∃(y)[B(y)] & ∃(x)[A(x)] & ∀(x)[(B(x) & A(x))])')

        # Coalescence over disjunction should merge Existentials
        disjunction = universal | universal_two | existential | existential_two
        self.assertEqual(repr(disjunction.coalesce()),
                         '(∀(x)[A(x)] | ∀(y)[B(y)] | ∃(y)[(A(y) | B(y))])')
Example #10
0
    def test_cnf_quantifier_scoping(self):

        a = Symbol.Predicate('A', ['x'])
        b = Symbol.Predicate('B', ['y'])
        c = Symbol.Predicate('C', ['z'])

        e = Quantifier.Existential(['x'], a)
        u = Quantifier.Universal(['y'], b)

        # Test the effect over an OR
        self.assertEqual('∃(x)[(A(x) | B(y))]', repr((e | b).rescope()))
        self.assertEqual('∀(y)[(B(y) | A(x))]', repr((u | a).rescope()))

        # Test the effect over an AND
        self.assertEqual('∃(x)[(A(x) & B(y))]', repr((e & b).rescope()))
        self.assertEqual('∀(y)[(B(y) & A(x))]', repr((u & a).rescope()))

        # Test with more than two to make sure things aren't dropped
        self.assertEqual('∀(y)[(B(y) & (A(x) | C(z) | B(y)))]',
                         repr((u & (a | c | b)).rescope()))
Example #11
0
    def push(self):
        '''
        Push negation inwards and apply to all children
        '''

        # Can be a conjunction or disjunction
        # Can be a single predicate
        # Can be a quantifier

        if isinstance(self.term(), Connective.Conjunction):

            ret = Connective.Disjunction([Negation(x) for x in self.term().get_term()])

        elif isinstance(self.term(), Connective.Disjunction):

            ret = Connective.Conjunction([Negation(x) for x in self.term().get_term()])

        elif isinstance(self.term(), Symbol.Predicate):

            ret = self

        elif isinstance(self.term(), Quantifier.Existential):

            ret = Quantifier.Universal(self.term().variables, Negation(self.term().get_term()))

        elif isinstance(self.term(), Quantifier.Universal):

            ret = Quantifier.Existential(self.term().variables, Negation(self.term().get_term()))

        elif isinstance(self.term(), Negation):

            ret = self.term().term()

        else:

            raise ValueError("Negation onto unknown type!", self.term)

        return copy.deepcopy(ret)
Example #12
0
    def test_onf_detection(self):

        alpha = Symbol.Predicate('A', ['x'])
        beta = Symbol.Predicate('B', ['y'])
        delta = Symbol.Predicate('D', ['z'])

        uni = Quantifier.Universal(['x', 'y', 'z'], alpha | beta | delta)
        exi = Quantifier.Existential(['x','y','z'], alpha & beta | delta)

        self.assertEqual(alpha.is_onf(), True)
        self.assertEqual((alpha | beta).is_onf(), True)
        self.assertEqual((alpha & beta).is_onf(), True)
        self.assertEqual((alpha | (beta & delta)).is_onf(), False)
        self.assertEqual((alpha & (beta | delta)).is_onf(), True)
        self.assertEqual((~(alpha | beta)).is_onf(), False)
        self.assertEqual((~(alpha & beta)).is_onf(), False)

        self.assertEqual(uni.is_onf(), True)
        self.assertEqual(exi.is_onf(), False)

        # Note that is_onf() is not a recursive call, it's a top level feature
        # If will actually if you need an ONF axiom then create a Logical.Axiom and to_onf()
        self.assertEqual((alpha & (alpha | (beta & delta)) & delta).is_onf(), False)
Example #13
0
    def substitute_function(self, negated = False):
        '''
        Find a function that's nested and replace it by adding a new variable and term
        '''

        # TODO This a dirty hack because cyclic imports are painful
        import logical.Quantifier as Quantifier
        import logical.Negation as Negation
        import logical.Connective as Connective

        global gen

        def sub_functions(term, predicates, variables):
            '''
            Does three things: (1) returns a variable that serves as the placeholder 
            for the function. (2) adds a minted predicate to the accumulator (3) adds
            any the newly introduced variable for each function to the accumulator
            '''

            # Singleton used to access an increasing integer sequence
            global gen

            # Base Case 0: I'm not event a function, I'm a variable
            if isinstance(term, str):
                
                # I'm a variable so I go in the variable accumulator
                variables.append(term)

                return term

            # Base Case 1: I'm a function with no nested functions!
            if isinstance(term, Function) and term.has_functions() == False:

                # Mint a new variable special
                new_variable = term.name.lower()[0] + gen()
                variables.append(new_variable)


                # Mint a new predicate with our original variables + the new one
                predicate_variables = term.variables
                predicate_variables.append(new_variable)

                predicate = Predicate(term.name, predicate_variables)
                predicates.append(predicate)

                # Return our fresh variable
                return new_variable

            # Recursive Case: I'm a function with nested functions!
            if isinstance(term, Function): #and term.has_functions() == True:

                # Still mint a new variable cuz I'm still a function
                new_variable = term.name.lower()[0] + gen()
                variables.append(new_variable)

                # Assemble my variables by a DFS down on my function / atom children
                predicate_variables = [sub_functions(x, predicates, variables) for x in term.variables]
                predicate_variables.append(new_variable)

                predicate = Predicate(term.name, predicate_variables)
                predicates.append(predicate)

                return new_variable

        predicate_accumulator = []
        variable_accumulator = []

        variables = [sub_functions(x, predicate_accumulator, variable_accumulator) for x in self.variables]
        if len(predicate_accumulator) > 1:
            term = Connective.Conjunction(predicate_accumulator)
        else:
            term = predicate_accumulator.pop()

        predicate = Predicate(self.name, variables)

        if negated:
            # The negation cancels out the normal conditional breakdown
            universal = Quantifier.Universal(variable_accumulator, predicate | term)
        else:
            universal = Quantifier.Universal(variable_accumulator, ~predicate | term)

        return universal, predicate_accumulator
Example #14
0
def p_universal(p):
    """
    universal : LPAREN FORALL LPAREN nonlogicals RPAREN axiom RPAREN
    """

    p[0] = Quantifier.Universal(p[4], p[6])
Example #15
0
def p_existential(p):
    """
    existential : LPAREN EXISTS LPAREN nonlogicals RPAREN axiom RPAREN
    """

    p[0] = Quantifier.Existential(p[4], p[6])