def add_expression_instruction(self, lhs, rhs): scope = self.scope_stack[-1] new_id = self.get_insn_id() from loopy.kernel.data import Assignment insn = Assignment(lhs, rhs, within_inames=frozenset(scope.active_loopy_inames), id=new_id, predicates=frozenset(self.conditions), tags=tuple(self.instruction_tags)) self.add_instruction(insn)
def add_expression_instruction(self, lhs, rhs): scope = self.scope_stack[-1] new_id = intern("insn%d" % self.insn_id_counter) self.insn_id_counter += 1 from loopy.kernel.data import Assignment insn = Assignment(lhs, rhs, within_inames=frozenset(scope.active_loopy_inames), id=new_id, predicates=frozenset(self.conditions), tags=tuple(self.instruction_tags)) scope.previous_instruction_id = new_id scope.instructions.append(insn)
def add_expression_instruction(self, lhs, rhs): scope = self.scope_stack[-1] new_id = intern("insn%d" % self.insn_id_counter) self.insn_id_counter += 1 if self.auto_dependencies and scope.previous_instruction_id: depends_on = frozenset([scope.previous_instruction_id]) else: depends_on = frozenset() from loopy.kernel.data import Assignment insn = Assignment( lhs, rhs, forced_iname_deps=frozenset( scope.active_loopy_inames), depends_on=depends_on, id=new_id, predicates=frozenset(self.conditions), tags=tuple(self.instruction_tags)) scope.previous_instruction_id = new_id scope.instructions.append(insn)
def save_or_reload_impl(self, temporary, subkernel, mode, promoted_temporary=lp.auto): assert mode in ("save", "reload") if promoted_temporary is auto: promoted_temporary = self.auto_promote_temporary(temporary) if promoted_temporary is None: return new_subdomain, hw_inames, dim_inames, iname_to_tag = ( self.augment_domain_for_save_or_reload(self.new_subdomain, promoted_temporary, mode, subkernel)) self.new_subdomain = new_subdomain save_or_load_insn_id = self.insn_name_gen("{name}.{mode}".format( name=temporary, mode=mode)) def add_subscript_if_subscript_nonempty(agg, subscript=()): from pymbolic.primitives import Subscript, Variable if len(subscript) == 0: return Variable(agg) else: return Subscript(Variable(agg), tuple(map(Variable, subscript))) orig_temporary = (self.kernel.temporary_variables[ promoted_temporary.orig_temporary_name]) dim_inames_trunc = dim_inames[:len(orig_temporary.shape)] args = (add_subscript_if_subscript_nonempty( temporary, subscript=dim_inames_trunc), add_subscript_if_subscript_nonempty(promoted_temporary.name, subscript=hw_inames + dim_inames)) if mode == "save": args = reversed(args) accessing_insns_in_subkernel = self.find_accessing_instructions_in_subkernel( temporary, subkernel) if mode == "save": depends_on = accessing_insns_in_subkernel update_deps = frozenset() elif mode == "reload": depends_on = frozenset() update_deps = accessing_insns_in_subkernel pre_barrier, post_barrier = self.get_enclosing_global_barrier_pair( subkernel) if pre_barrier is not None: depends_on |= set([pre_barrier]) if post_barrier is not None: update_deps |= set([post_barrier]) # Create the load / store instruction. from loopy.kernel.data import Assignment save_or_load_insn = Assignment( *args, id=save_or_load_insn_id, within_inames=(self.subkernel_to_surrounding_inames[subkernel] | frozenset(hw_inames + dim_inames)), within_inames_is_final=True, depends_on=depends_on, boostable=False, boostable_into=frozenset()) if mode == "save": self.temporary_to_save_ids[temporary].add(save_or_load_insn_id) else: self.temporary_to_reload_ids[temporary].add(save_or_load_insn_id) self.subkernel_to_newly_added_insn_ids[subkernel].add( save_or_load_insn_id) self.insns_to_insert.append(save_or_load_insn) for insn_id in update_deps: insn = self.insns_to_update.get(insn_id, self.kernel.id_to_insn[insn_id]) self.insns_to_update[insn_id] = insn.copy( depends_on=insn.depends_on | frozenset([save_or_load_insn_id])) self.updated_temporary_variables[promoted_temporary.name] = ( promoted_temporary.as_kernel_temporary(self.kernel)) self.updated_iname_to_tag.update(iname_to_tag)
def precompute( kernel, subst_use, sweep_inames=[], within=None, storage_axes=None, temporary_name=None, precompute_inames=None, precompute_outer_inames=None, storage_axis_to_tag={}, # "None" is a valid value here, distinct from the default. default_tag=_not_provided, dtype=None, fetch_bounding_box=False, temporary_address_space=None, compute_insn_id=None, **kwargs): """Precompute the expression described in the substitution rule determined by *subst_use* and store it in a temporary array. A precomputation needs two things to operate, a list of *sweep_inames* (order irrelevant) and an ordered list of *storage_axes* (whose order will describe the axis ordering of the temporary array). :arg subst_use: Describes what to prefetch. The following objects may be given for *subst_use*: * The name of the substitution rule. * The tagged name ("name$tag") of the substitution rule. * A list of invocations of the substitution rule. This list of invocations, when swept across *sweep_inames*, then serves to define the footprint of the precomputation. Invocations may be tagged ("name$tag") to filter out a subset of the usage sites of the substitution rule. (Namely those usage sites that use the same tagged name.) Invocations may be given as a string or as a :class:`pymbolic.primitives.Expression` object. If only one invocation is to be given, then the only entry of the list may be given directly. If the list of invocations generating the footprint is not given, all (tag-matching, if desired) usage sites of the substitution rule are used to determine the footprint. The following cases can arise for each sweep axis: * The axis is an iname that occurs within arguments specified at usage sites of the substitution rule. This case is assumed covered by the storage axes provided for the argument. * The axis is an iname that occurs within the *value* of the rule, but not within its arguments. A new, dedicated storage axis is allocated for such an axis. :arg sweep_inames: A :class:`list` of inames to be swept. May also equivalently be a comma-separated string. :arg within: a stack match as understood by :func:`loopy.match.parse_stack_match`. :arg storage_axes: A :class:`list` of inames and/or rule argument names/indices to be used as storage axes. May also equivalently be a comma-separated string. :arg temporary_name: The temporary variable name to use for storing the precomputed data. If it does not exist, it will be created. If it does exist, its properties (such as size, type) are checked (and updated, if possible) to match its use. :arg precompute_inames: A tuple of inames to be used to carry out the precomputation. If the specified inames do not already exist, they will be created. If they do already exist, their loop domain is verified against the one required for this precomputation. This tuple may be shorter than the (provided or automatically found) *storage_axes* tuple, in which case names will be automatically created. May also equivalently be a comma-separated string. :arg precompute_outer_inames: A :class:`frozenset` of inames within which the compute instruction is nested. If *None*, make an educated guess. May also be specified as a comma-separated string. :arg default_tag: The :ref:`iname tag <iname-tags>` to be applied to the inames created to perform the precomputation. The current default will make them local axes and automatically split them to fit the work group size, but this default will disappear in favor of simply leaving them untagged in 2019. For 2018, a warning will be issued if no *default_tag* is specified. :arg compute_insn_id: The ID of the instruction generated to perform the precomputation. If `storage_axes` is not specified, it defaults to the arrangement `<direct sweep axes><arguments>` with the direct sweep axes being the slower-varying indices. Trivial storage axes (i.e. axes of length 1 with respect to the sweep) are eliminated. """ # {{{ unify temporary_address_space / temporary_scope temporary_scope = kwargs.pop("temporary_scope", None) from loopy.kernel.data import AddressSpace if temporary_scope is not None: from warnings import warn warn( "temporary_scope is deprecated. Use temporary_address_space instead", DeprecationWarning, stacklevel=2) if temporary_address_space is not None: raise LoopyError( "may not specify both temporary_address_space and " "temporary_scope") temporary_address_space = temporary_scope del temporary_scope # }}} if kwargs: raise TypeError("unrecognized keyword arguments: %s" % ", ".join(kwargs.keys())) # {{{ check, standardize arguments if isinstance(sweep_inames, str): sweep_inames = [iname.strip() for iname in sweep_inames.split(",")] for iname in sweep_inames: if iname not in kernel.all_inames(): raise RuntimeError("sweep iname '%s' is not a known iname" % iname) sweep_inames = list(sweep_inames) sweep_inames_set = frozenset(sweep_inames) if isinstance(storage_axes, str): storage_axes = [ax.strip() for ax in storage_axes.split(",")] if isinstance(precompute_inames, str): precompute_inames = [ iname.strip() for iname in precompute_inames.split(",") ] if isinstance(precompute_outer_inames, str): precompute_outer_inames = frozenset( iname.strip() for iname in precompute_outer_inames.split(",")) if isinstance(subst_use, str): subst_use = [subst_use] footprint_generators = None subst_name = None subst_tag = None from pymbolic.primitives import Variable, Call from loopy.symbolic import parse, TaggedVariable for use in subst_use: if isinstance(use, str): use = parse(use) if isinstance(use, Call): if footprint_generators is None: footprint_generators = [] footprint_generators.append(use) subst_name_as_expr = use.function else: subst_name_as_expr = use if isinstance(subst_name_as_expr, TaggedVariable): new_subst_name = subst_name_as_expr.name new_subst_tag = subst_name_as_expr.tag elif isinstance(subst_name_as_expr, Variable): new_subst_name = subst_name_as_expr.name new_subst_tag = None else: raise ValueError("unexpected type of subst_name") if (subst_name, subst_tag) == (None, None): subst_name, subst_tag = new_subst_name, new_subst_tag else: if (subst_name, subst_tag) != (new_subst_name, new_subst_tag): raise ValueError("not all uses in subst_use agree " "on rule name and tag") from loopy.match import parse_stack_match within = parse_stack_match(within) try: subst = kernel.substitutions[subst_name] except KeyError: raise LoopyError("substitution rule '%s' not found" % subst_name) c_subst_name = subst_name.replace(".", "_") # {{{ handle default_tag from loopy.transform.data import _not_provided \ as transform_data_not_provided if default_tag is _not_provided or default_tag is transform_data_not_provided: # no need to warn for scalar precomputes if sweep_inames: from warnings import warn warn( "Not specifying default_tag is deprecated, and default_tag " "will become mandatory in 2019.x. " "Pass 'default_tag=\"l.auto\" to match the current default, " "or Pass 'default_tag=None to leave the loops untagged, which " "is the recommended behavior.", DeprecationWarning, stacklevel=( # In this case, we came here through add_prefetch. Increase # the stacklevel. 3 if default_tag is transform_data_not_provided else 2)) default_tag = "l.auto" from loopy.kernel.data import parse_tag default_tag = parse_tag(default_tag) # }}} # }}} # {{{ process invocations in footprint generators, start access_descriptors if footprint_generators: from pymbolic.primitives import Variable, Call access_descriptors = [] for fpg in footprint_generators: if isinstance(fpg, Variable): args = () elif isinstance(fpg, Call): args = fpg.parameters else: raise ValueError("footprint generator must " "be substitution rule invocation") access_descriptors.append( RuleAccessDescriptor(identifier=access_descriptor_id( args, None), args=args)) # }}} # {{{ gather up invocations in kernel code, finish access_descriptors if not footprint_generators: rule_mapping_context = SubstitutionRuleMappingContext( kernel.substitutions, kernel.get_var_name_generator()) invg = RuleInvocationGatherer(rule_mapping_context, kernel, subst_name, subst_tag, within) del rule_mapping_context import loopy as lp for insn in kernel.instructions: if isinstance(insn, lp.MultiAssignmentBase): for assignee in insn.assignees: invg(assignee, kernel, insn) invg(insn.expression, kernel, insn) access_descriptors = invg.access_descriptors if not access_descriptors: raise RuntimeError("no invocations of '%s' found" % subst_name) # }}} # {{{ find inames used in arguments expanding_usage_arg_deps = set() for accdesc in access_descriptors: for arg in accdesc.args: expanding_usage_arg_deps.update( get_dependencies(arg) & kernel.all_inames()) # }}} var_name_gen = kernel.get_var_name_generator() # {{{ use given / find new storage_axes # extra axes made necessary because they don't occur in the arguments extra_storage_axes = set(sweep_inames_set - expanding_usage_arg_deps) from loopy.symbolic import SubstitutionRuleExpander submap = SubstitutionRuleExpander(kernel.substitutions) value_inames = (get_dependencies(submap(subst.expression)) - frozenset(subst.arguments)) & kernel.all_inames() if value_inames - expanding_usage_arg_deps < extra_storage_axes: raise RuntimeError("unreferenced sweep inames specified: " + ", ".join(extra_storage_axes - value_inames - expanding_usage_arg_deps)) new_iname_to_tag = {} if storage_axes is None: storage_axes = [] # Add sweep_inames (in given--rather than arbitrary--order) to # storage_axes *if* they are part of extra_storage_axes. for iname in sweep_inames: if iname in extra_storage_axes: extra_storage_axes.remove(iname) storage_axes.append(iname) if extra_storage_axes: if (precompute_inames is not None and len(storage_axes) < len(precompute_inames)): raise LoopyError( "must specify a sufficient number of " "storage_axes to uniquely determine the meaning " "of the given precompute_inames. (%d storage_axes " "needed)" % len(precompute_inames)) storage_axes.extend(sorted(extra_storage_axes)) storage_axes.extend(range(len(subst.arguments))) del extra_storage_axes prior_storage_axis_name_dict = {} storage_axis_names = [] storage_axis_sources = [] # number for arg#, or iname # {{{ check for pre-existing precompute_inames if precompute_inames is not None: preexisting_precompute_inames = (set(precompute_inames) & kernel.all_inames()) else: preexisting_precompute_inames = set() # }}} for i, saxis in enumerate(storage_axes): tag_lookup_saxis = saxis if saxis in subst.arguments: saxis = subst.arguments.index(saxis) storage_axis_sources.append(saxis) if isinstance(saxis, int): # argument index name = old_name = subst.arguments[saxis] else: old_name = saxis name = "%s_%s" % (c_subst_name, old_name) if (precompute_inames is not None and i < len(precompute_inames) and precompute_inames[i]): name = precompute_inames[i] tag_lookup_saxis = name if (name not in preexisting_precompute_inames and var_name_gen.is_name_conflicting(name)): raise RuntimeError("new storage axis name '%s' " "conflicts with existing name" % name) else: name = var_name_gen(name) storage_axis_names.append(name) if name not in preexisting_precompute_inames: new_iname_to_tag[name] = storage_axis_to_tag.get( tag_lookup_saxis, default_tag) prior_storage_axis_name_dict[name] = old_name del storage_axis_to_tag del storage_axes del precompute_inames # }}} # {{{ fill out access_descriptors[...].storage_axis_exprs access_descriptors = [ accdesc.copy(storage_axis_exprs=storage_axis_exprs( storage_axis_sources, accdesc.args)) for accdesc in access_descriptors ] # }}} expanding_inames = sweep_inames_set | frozenset(expanding_usage_arg_deps) assert expanding_inames <= kernel.all_inames() if storage_axis_names: # {{{ find domain to be changed change_inames = expanding_inames | preexisting_precompute_inames from loopy.kernel.tools import DomainChanger domch = DomainChanger(kernel, change_inames) if domch.leaf_domain_index is not None: # If the sweep inames are at home in parent domains, then we'll add # fetches with loops over copies of these parent inames that will end # up being scheduled *within* loops over these parents. for iname in sweep_inames_set: if kernel.get_home_domain_index( iname) != domch.leaf_domain_index: raise RuntimeError( "sweep iname '%s' is not 'at home' in the " "sweep's leaf domain" % iname) # }}} abm = ArrayToBufferMap(kernel, domch.domain, sweep_inames, access_descriptors, len(storage_axis_names)) non1_storage_axis_names = [] for i, saxis in enumerate(storage_axis_names): if abm.non1_storage_axis_flags[i]: non1_storage_axis_names.append(saxis) else: del new_iname_to_tag[saxis] if saxis in preexisting_precompute_inames: raise LoopyError( "precompute axis %d (1-based) was " "eliminated as " "having length 1 but also mapped to existing " "iname '%s'" % (i + 1, saxis)) mod_domain = domch.domain # {{{ modify the domain, taking into account preexisting inames # inames may already exist in mod_domain, add them primed to start primed_non1_saxis_names = [ iname + "'" for iname in non1_storage_axis_names ] mod_domain = abm.augment_domain_with_sweep( domch.domain, primed_non1_saxis_names, boxify_sweep=fetch_bounding_box) check_domain = mod_domain for i, saxis in enumerate(non1_storage_axis_names): var_dict = mod_domain.get_var_dict(isl.dim_type.set) if saxis in preexisting_precompute_inames: # add equality constraint between existing and new variable dt, dim_idx = var_dict[saxis] saxis_aff = isl.Aff.var_on_domain(mod_domain.space, dt, dim_idx) dt, dim_idx = var_dict[primed_non1_saxis_names[i]] new_var_aff = isl.Aff.var_on_domain(mod_domain.space, dt, dim_idx) mod_domain = mod_domain.add_constraint( isl.Constraint.equality_from_aff(new_var_aff - saxis_aff)) # project out the new one mod_domain = mod_domain.project_out(dt, dim_idx, 1) else: # remove the prime from the new variable dt, dim_idx = var_dict[primed_non1_saxis_names[i]] mod_domain = mod_domain.set_dim_name(dt, dim_idx, saxis) def add_assumptions(d): assumption_non_param = isl.BasicSet.from_params(kernel.assumptions) assumptions, domain = isl.align_two(assumption_non_param, d) return assumptions & domain # {{{ check that we got the desired domain check_domain = add_assumptions( check_domain.project_out_except(primed_non1_saxis_names, [isl.dim_type.set])) mod_check_domain = add_assumptions(mod_domain) # re-add the prime from the new variable var_dict = mod_check_domain.get_var_dict(isl.dim_type.set) for saxis in non1_storage_axis_names: dt, dim_idx = var_dict[saxis] mod_check_domain = mod_check_domain.set_dim_name( dt, dim_idx, saxis + "'") mod_check_domain = mod_check_domain.project_out_except( primed_non1_saxis_names, [isl.dim_type.set]) mod_check_domain, check_domain = isl.align_two(mod_check_domain, check_domain) # The modified domain can't get bigger by adding constraints assert mod_check_domain <= check_domain if not check_domain <= mod_check_domain: print(check_domain) print(mod_check_domain) raise LoopyError("domain of preexisting inames does not match " "domain needed for precompute") # }}} # {{{ check that we didn't shrink the original domain # project out the new names from the modified domain orig_domain_inames = list(domch.domain.get_var_dict(isl.dim_type.set)) mod_check_domain = add_assumptions( mod_domain.project_out_except(orig_domain_inames, [isl.dim_type.set])) check_domain = add_assumptions(domch.domain) mod_check_domain, check_domain = isl.align_two(mod_check_domain, check_domain) # The modified domain can't get bigger by adding constraints assert mod_check_domain <= check_domain if not check_domain <= mod_check_domain: print(check_domain) print(mod_check_domain) raise LoopyError( "original domain got shrunk by applying the precompute") # }}} # }}} new_kernel_domains = domch.get_domains_with(mod_domain) else: # leave kernel domains unchanged new_kernel_domains = kernel.domains non1_storage_axis_names = [] abm = NoOpArrayToBufferMap() kernel = kernel.copy(domains=new_kernel_domains) # {{{ set up compute insn if temporary_name is None: temporary_name = var_name_gen(based_on=c_subst_name) assignee = var(temporary_name) if non1_storage_axis_names: assignee = assignee[tuple( var(iname) for iname in non1_storage_axis_names)] # {{{ process substitutions on compute instruction storage_axis_subst_dict = {} for arg_name, bi in zip(storage_axis_names, abm.storage_base_indices): if arg_name in non1_storage_axis_names: arg = var(arg_name) else: arg = 0 storage_axis_subst_dict[prior_storage_axis_name_dict.get( arg_name, arg_name)] = arg + bi rule_mapping_context = SubstitutionRuleMappingContext( kernel.substitutions, kernel.get_var_name_generator()) from loopy.match import parse_stack_match expr_subst_map = RuleAwareSubstitutionMapper( rule_mapping_context, make_subst_func(storage_axis_subst_dict), within=parse_stack_match(None)) compute_expression = expr_subst_map(subst.expression, kernel, None) # }}} from loopy.kernel.data import Assignment if compute_insn_id is None: compute_insn_id = kernel.make_unique_instruction_id( based_on=c_subst_name) compute_insn = Assignment( id=compute_insn_id, assignee=assignee, expression=compute_expression, # within_inames determined below ) compute_dep_id = compute_insn_id added_compute_insns = [compute_insn] if temporary_address_space == AddressSpace.GLOBAL: barrier_insn_id = kernel.make_unique_instruction_id( based_on=c_subst_name + "_barrier") from loopy.kernel.instruction import BarrierInstruction barrier_insn = BarrierInstruction(id=barrier_insn_id, depends_on=frozenset( [compute_insn_id]), synchronization_kind="global", mem_kind="global") compute_dep_id = barrier_insn_id added_compute_insns.append(barrier_insn) # }}} # {{{ substitute rule into expressions in kernel (if within footprint) from loopy.symbolic import SubstitutionRuleExpander expander = SubstitutionRuleExpander(kernel.substitutions) invr = RuleInvocationReplacer(rule_mapping_context, subst_name, subst_tag, within, access_descriptors, abm, storage_axis_names, storage_axis_sources, non1_storage_axis_names, temporary_name, compute_insn_id, compute_dep_id, compute_read_variables=get_dependencies( expander(compute_expression))) kernel = invr.map_kernel(kernel) kernel = kernel.copy(instructions=added_compute_insns + kernel.instructions) kernel = rule_mapping_context.finish_kernel(kernel) # }}} # {{{ add dependencies to compute insn kernel = kernel.copy(instructions=[ insn.copy(depends_on=frozenset(invr.compute_insn_depends_on)) if insn. id == compute_insn_id else insn for insn in kernel.instructions ]) # }}} # {{{ propagate storage iname subst to dependencies of compute instructions from loopy.kernel.tools import find_recursive_dependencies compute_deps = find_recursive_dependencies(kernel, frozenset([compute_insn_id])) # FIXME: Need to verify that there are no outside dependencies # on compute_deps prior_storage_axis_names = frozenset(storage_axis_subst_dict) new_insns = [] for insn in kernel.instructions: if (insn.id in compute_deps and insn.within_inames & prior_storage_axis_names): insn = (insn.with_transformed_expressions( lambda expr: expr_subst_map(expr, kernel, insn)).copy( within_inames=frozenset( storage_axis_subst_dict.get(iname, var(iname)).name for iname in insn.within_inames))) new_insns.append(insn) else: new_insns.append(insn) kernel = kernel.copy(instructions=new_insns) # }}} # {{{ determine inames for compute insn if precompute_outer_inames is None: from loopy.kernel.tools import guess_iname_deps_based_on_var_use precompute_outer_inames = ( frozenset(non1_storage_axis_names) | frozenset((expanding_usage_arg_deps | value_inames) - sweep_inames_set) | guess_iname_deps_based_on_var_use(kernel, compute_insn)) else: if not isinstance(precompute_outer_inames, frozenset): raise TypeError("precompute_outer_inames must be a frozenset") precompute_outer_inames = precompute_outer_inames \ | frozenset(non1_storage_axis_names) kernel = kernel.copy(instructions=[ insn.copy(within_inames=precompute_outer_inames) if insn.id == compute_insn_id else insn for insn in kernel.instructions ]) # }}} # {{{ set up temp variable import loopy as lp if dtype is not None: dtype = np.dtype(dtype) if temporary_address_space is None: temporary_address_space = lp.auto new_temp_shape = tuple(abm.non1_storage_shape) new_temporary_variables = kernel.temporary_variables.copy() if temporary_name not in new_temporary_variables: temp_var = lp.TemporaryVariable( name=temporary_name, dtype=dtype, base_indices=(0, ) * len(new_temp_shape), shape=tuple(abm.non1_storage_shape), address_space=temporary_address_space, dim_names=tuple(non1_storage_axis_names)) else: temp_var = new_temporary_variables[temporary_name] # {{{ check and adapt existing temporary if temp_var.dtype is lp.auto: pass elif temp_var.dtype is not lp.auto and dtype is lp.auto: dtype = temp_var.dtype elif temp_var.dtype is not lp.auto and dtype is not lp.auto: if temp_var.dtype != dtype: raise LoopyError("Existing and new dtype of temporary '%s' " "do not match (existing: %s, new: %s)" % (temporary_name, temp_var.dtype, dtype)) temp_var = temp_var.copy(dtype=dtype) if len(temp_var.shape) != len(new_temp_shape): raise LoopyError( "Existing and new temporary '%s' do not " "have matching number of dimensions ('%d' vs. '%d') " % (temporary_name, len(temp_var.shape), len(new_temp_shape))) if temp_var.base_indices != (0, ) * len(new_temp_shape): raise LoopyError( "Existing and new temporary '%s' do not " "have matching number of dimensions ('%d' vs. '%d') " % (temporary_name, len(temp_var.shape), len(new_temp_shape))) new_temp_shape = tuple( max(i, ex_i) for i, ex_i in zip(new_temp_shape, temp_var.shape)) temp_var = temp_var.copy(shape=new_temp_shape) if temporary_address_space == temp_var.address_space: pass elif temporary_address_space is lp.auto: temporary_address_space = temp_var.address_space elif temp_var.address_space is lp.auto: pass else: raise LoopyError("Existing and new temporary '%s' do not " "have matching scopes (existing: %s, new: %s)" % (temporary_name, AddressSpace.stringify(temp_var.address_space), AddressSpace.stringify(temporary_address_space))) temp_var = temp_var.copy(address_space=temporary_address_space) # }}} new_temporary_variables[temporary_name] = temp_var kernel = kernel.copy(temporary_variables=new_temporary_variables) # }}} from loopy import tag_inames kernel = tag_inames(kernel, new_iname_to_tag) from loopy.kernel.data import AutoFitLocalIndexTag, filter_iname_tags_by_type if filter_iname_tags_by_type(new_iname_to_tag.values(), AutoFitLocalIndexTag): from loopy.kernel.tools import assign_automatic_axes kernel = assign_automatic_axes(kernel) return kernel
def buffer_array(kernel, var_name, buffer_inames, init_expression=None, store_expression=None, within=None, default_tag="l.auto", temporary_scope=None, temporary_is_local=None, fetch_bounding_box=False): """Replace accesses to *var_name* with ones to a temporary, which is created and acts as a buffer. To perform this transformation, the access footprint to *var_name* is determined and a temporary of a suitable :class:`loopy.AddressSpace` and shape is created. By default, the value of the buffered cells in *var_name* are read prior to any (read/write) use, and the modified values are written out after use has concluded, but for special use cases (e.g. additive accumulation), the behavior can be modified using *init_expression* and *store_expression*. :arg buffer_inames: The inames across which the buffer should be usable--i.e. all possible values of these inames will be covered by the buffer footprint. A tuple of inames or a comma-separated string. :arg init_expression: Either *None* (indicating the prior value of the buffered array should be read) or an expression optionally involving the variable 'base' (which references the associated location in the array being buffered). :arg store_expression: Either *None*, *False*, or an expression involving variables 'base' and 'buffer' (without array indices). (*None* indicates that a default storage instruction should be used, *False* indicates that no storing of the temporary should occur at all.) :arg within: If not None, limit the action of the transformation to matching contexts. See :func:`loopy.match.parse_stack_match` for syntax. :arg temporary_scope: If given, override the choice of :class:`AddressSpace` for the created temporary. :arg default_tag: The default :ref:`iname-tags` to be assigned to the inames used for fetching and storing :arg fetch_bounding_box: If the access footprint is non-convex (resulting in an error), setting this argument to *True* will force a rectangular (and hence convex) superset of the footprint to be fetched. """ # {{{ unify temporary_scope / temporary_is_local from loopy.kernel.data import AddressSpace if temporary_is_local is not None: from warnings import warn warn("temporary_is_local is deprecated. Use temporary_scope instead", DeprecationWarning, stacklevel=2) if temporary_scope is not None: raise LoopyError("may not specify both temporary_is_local and " "temporary_scope") if temporary_is_local: temporary_scope = AddressSpace.LOCAL else: temporary_scope = AddressSpace.PRIVATE del temporary_is_local # }}} # {{{ process arguments if isinstance(init_expression, str): from loopy.symbolic import parse init_expression = parse(init_expression) if isinstance(store_expression, str): from loopy.symbolic import parse store_expression = parse(store_expression) if isinstance(buffer_inames, str): buffer_inames = [s.strip() for s in buffer_inames.split(",") if s.strip()] for iname in buffer_inames: if iname not in kernel.all_inames(): raise RuntimeError("sweep iname '%s' is not a known iname" % iname) buffer_inames = list(buffer_inames) buffer_inames_set = frozenset(buffer_inames) from loopy.match import parse_stack_match within = parse_stack_match(within) if var_name in kernel.arg_dict: var_descr = kernel.arg_dict[var_name] elif var_name in kernel.temporary_variables: var_descr = kernel.temporary_variables[var_name] else: raise ValueError("variable '%s' not found" % var_name) from loopy.kernel.data import ArrayBase if isinstance(var_descr, ArrayBase): var_shape = var_descr.shape else: var_shape = () if temporary_scope is None: import loopy as lp temporary_scope = lp.auto # }}} # {{{ caching from loopy import CACHING_ENABLED from loopy.preprocess import prepare_for_caching key_kernel = prepare_for_caching(kernel) cache_key = (key_kernel, var_name, tuple(buffer_inames), PymbolicExpressionHashWrapper(init_expression), PymbolicExpressionHashWrapper(store_expression), within, default_tag, temporary_scope, fetch_bounding_box) if CACHING_ENABLED: try: result = buffer_array_cache[cache_key] logger.info("%s: buffer_array cache hit" % kernel.name) return result except KeyError: pass # }}} var_name_gen = kernel.get_var_name_generator() within_inames = set() access_descriptors = [] for insn in kernel.instructions: if not within(kernel, insn.id, ()): continue from pymbolic.primitives import Variable, Subscript from loopy.symbolic import LinearSubscript for assignee in insn.assignees: if isinstance(assignee, Variable): assignee_name = assignee.name index = () elif isinstance(assignee, Subscript): assignee_name = assignee.aggregate.name index = assignee.index_tuple elif isinstance(assignee, LinearSubscript): if assignee.aggregate.name == var_name: raise LoopyError("buffer_array may not be applied in the " "presence of linear write indexing into '%s'" % var_name) else: raise LoopyError("invalid lvalue '%s'" % assignee) if assignee_name == var_name: within_inames.update( (get_dependencies(index) & kernel.all_inames()) - buffer_inames_set) access_descriptors.append( AccessDescriptor( identifier=insn.id, storage_axis_exprs=index)) # {{{ find fetch/store inames init_inames = [] store_inames = [] new_iname_to_tag = {} for i in range(len(var_shape)): dim_name = str(i) if isinstance(var_descr, ArrayBase) and var_descr.dim_names is not None: dim_name = var_descr.dim_names[i] init_iname = var_name_gen(f"{var_name}_init_{dim_name}") store_iname = var_name_gen(f"{var_name}_store_{dim_name}") new_iname_to_tag[init_iname] = default_tag new_iname_to_tag[store_iname] = default_tag init_inames.append(init_iname) store_inames.append(store_iname) # }}} # {{{ modify loop domain non1_init_inames = [] non1_store_inames = [] if var_shape: # {{{ find domain to be changed from loopy.kernel.tools import DomainChanger domch = DomainChanger(kernel, buffer_inames_set | within_inames) if domch.leaf_domain_index is not None: # If the sweep inames are at home in parent domains, then we'll add # fetches with loops over copies of these parent inames that will end # up being scheduled *within* loops over these parents. for iname in buffer_inames_set: if kernel.get_home_domain_index(iname) != domch.leaf_domain_index: raise RuntimeError("buffer iname '%s' is not 'at home' in the " "sweep's leaf domain" % iname) # }}} abm = ArrayToBufferMap(kernel, domch.domain, buffer_inames, access_descriptors, len(var_shape)) for i in range(len(var_shape)): if abm.non1_storage_axis_flags[i]: non1_init_inames.append(init_inames[i]) non1_store_inames.append(store_inames[i]) else: del new_iname_to_tag[init_inames[i]] del new_iname_to_tag[store_inames[i]] new_domain = domch.domain new_domain = abm.augment_domain_with_sweep( new_domain, non1_init_inames, boxify_sweep=fetch_bounding_box) new_domain = abm.augment_domain_with_sweep( new_domain, non1_store_inames, boxify_sweep=fetch_bounding_box) new_kernel_domains = domch.get_domains_with(new_domain) del new_domain else: # leave kernel domains unchanged new_kernel_domains = kernel.domains abm = NoOpArrayToBufferMap() # }}} # {{{ set up temp variable import loopy as lp buf_var_name = var_name_gen(based_on=var_name+"_buf") new_temporary_variables = kernel.temporary_variables.copy() temp_var = lp.TemporaryVariable( name=buf_var_name, dtype=var_descr.dtype, base_indices=(0,)*len(abm.non1_storage_shape), shape=tuple(abm.non1_storage_shape), address_space=temporary_scope) new_temporary_variables[buf_var_name] = temp_var # }}} new_insns = [] buf_var = var(buf_var_name) # {{{ generate init instruction buf_var_init = buf_var if non1_init_inames: buf_var_init = buf_var_init.index( tuple(var(iname) for iname in non1_init_inames)) init_base = var(var_name) init_subscript = [] init_iname_idx = 0 if var_shape: for i in range(len(var_shape)): ax_subscript = abm.storage_base_indices[i] if abm.non1_storage_axis_flags[i]: ax_subscript += var(non1_init_inames[init_iname_idx]) init_iname_idx += 1 init_subscript.append(ax_subscript) if init_subscript: init_base = init_base.index(tuple(init_subscript)) if init_expression is None: init_expression = init_base else: init_expression = init_expression init_expression = SubstitutionMapper( make_subst_func({ "base": init_base, }))(init_expression) init_insn_id = kernel.make_unique_instruction_id(based_on="init_"+var_name) from loopy.kernel.data import Assignment init_instruction = Assignment(id=init_insn_id, assignee=buf_var_init, expression=init_expression, within_inames=( frozenset(within_inames) | frozenset(non1_init_inames)), depends_on=frozenset(), depends_on_is_final=True) # }}} rule_mapping_context = SubstitutionRuleMappingContext( kernel.substitutions, kernel.get_var_name_generator()) aar = ArrayAccessReplacer(rule_mapping_context, var_name, within, abm, buf_var) kernel = rule_mapping_context.finish_kernel(aar.map_kernel(kernel)) did_write = False for insn_id in aar.modified_insn_ids: insn = kernel.id_to_insn[insn_id] if buf_var_name in insn.assignee_var_names(): did_write = True # {{{ add init_insn_id to depends_on new_insns = [] def none_to_empty_set(s): if s is None: return frozenset() else: return s for insn in kernel.instructions: if insn.id in aar.modified_insn_ids: new_insns.append( insn.copy( depends_on=( none_to_empty_set(insn.depends_on) | frozenset([init_insn_id])))) else: new_insns.append(insn) # }}} # {{{ generate store instruction buf_var_store = buf_var if non1_store_inames: buf_var_store = buf_var_store.index( tuple(var(iname) for iname in non1_store_inames)) store_subscript = [] store_iname_idx = 0 if var_shape: for i in range(len(var_shape)): ax_subscript = abm.storage_base_indices[i] if abm.non1_storage_axis_flags[i]: ax_subscript += var(non1_store_inames[store_iname_idx]) store_iname_idx += 1 store_subscript.append(ax_subscript) store_target = var(var_name) if store_subscript: store_target = store_target.index(tuple(store_subscript)) if store_expression is None: store_expression = buf_var_store else: store_expression = SubstitutionMapper( make_subst_func({ "base": store_target, "buffer": buf_var_store, }))(store_expression) if store_expression is not False: from loopy.kernel.data import Assignment store_instruction = Assignment( id=kernel.make_unique_instruction_id(based_on="store_"+var_name), depends_on=frozenset(aar.modified_insn_ids), no_sync_with=frozenset([(init_insn_id, "any")]), assignee=store_target, expression=store_expression, within_inames=( frozenset(within_inames) | frozenset(non1_store_inames))) else: did_write = False # }}} new_insns.append(init_instruction) if did_write: new_insns.append(store_instruction) else: for iname in store_inames: del new_iname_to_tag[iname] kernel = kernel.copy( domains=new_kernel_domains, instructions=new_insns, temporary_variables=new_temporary_variables) from loopy import tag_inames kernel = tag_inames(kernel, new_iname_to_tag) from loopy.kernel.tools import assign_automatic_axes kernel = assign_automatic_axes(kernel) if CACHING_ENABLED: from loopy.preprocess import prepare_for_caching buffer_array_cache.store_if_not_present( cache_key, prepare_for_caching(kernel)) return kernel
def save_or_reload_impl(self, temporary, subkernel, mode, promoted_temporary=lp.auto): assert mode in ("save", "reload") if promoted_temporary is auto: promoted_temporary = self.auto_promote_temporary(temporary) if promoted_temporary is None: return from loopy.kernel.tools import DomainChanger dchg = DomainChanger( self.kernel, frozenset( self.insn_query.inames_in_subkernel(subkernel) | set(promoted_temporary.hw_inames))) domain, hw_inames, dim_inames, iname_to_tag = \ self.augment_domain_for_save_or_reload( dchg.domain, promoted_temporary, mode, subkernel) self.kernel = dchg.get_kernel_with(domain) save_or_load_insn_id = self.insn_name_gen("{name}.{mode}".format( name=temporary, mode=mode)) def subscript_or_var(agg, subscript=()): from pymbolic.primitives import Subscript, Variable if len(subscript) == 0: return Variable(agg) else: return Subscript(Variable(agg), tuple(map(Variable, subscript))) dim_inames_trunc = dim_inames[:len(promoted_temporary.orig_temporary. shape)] args = (subscript_or_var(temporary, dim_inames_trunc), subscript_or_var(promoted_temporary.name, hw_inames + dim_inames)) if mode == "save": args = reversed(args) accessing_insns_in_subkernel = ( self.insn_query.insns_reading_or_writing(temporary) & self.insn_query.insns_in_subkernel(subkernel)) if mode == "save": depends_on = accessing_insns_in_subkernel update_deps = frozenset() elif mode == "reload": depends_on = frozenset() update_deps = accessing_insns_in_subkernel pre_barrier, post_barrier = self.insn_query.pre_and_post_barriers( subkernel) if pre_barrier is not None: depends_on |= set([pre_barrier]) if post_barrier is not None: update_deps |= set([post_barrier]) # Create the load / store instruction. from loopy.kernel.data import Assignment save_or_load_insn = Assignment( *args, id=save_or_load_insn_id, within_inames=(self.insn_query.inames_in_subkernel(subkernel) | frozenset(hw_inames + dim_inames)), within_inames_is_final=True, depends_on=depends_on, boostable=False, boostable_into=frozenset()) if temporary not in self.saves_or_reloads_added: self.saves_or_reloads_added[temporary] = set() self.saves_or_reloads_added[temporary].add(save_or_load_insn_id) self.insns_to_insert.append(save_or_load_insn) for insn_id in update_deps: insn = self.insns_to_update.get(insn_id, self.kernel.id_to_insn[insn_id]) self.insns_to_update[insn_id] = insn.copy( depends_on=insn.depends_on | frozenset([save_or_load_insn_id])) self.updated_temporary_variables[promoted_temporary.name] = \ promoted_temporary.as_variable() self.updated_iname_to_tag.update(iname_to_tag)
def insert_loads_or_spills(tvals, mode): assert mode in ["load", "spill"] local_temporaries = set() code_block = \ subkernel_prolog if mode == "load" else subkernel_epilog new_kernel = kernel for tval in tvals: from loopy.kernel.tools import DomainChanger tval_hw_inames = new_temporaries[tval].hw_inames dchg = DomainChanger( kernel, frozenset(sched_item.extra_inames + tval_hw_inames)) domain = dchg.domain domain, hw_inames, dim_inames, itt = \ augment_domain_for_temporary_promotion( new_kernel, domain, new_temporaries[tval], mode, name_gen) new_iname_to_tag.update(itt) new_kernel = dchg.get_kernel_with(domain) # Add the load / spill instruction. insn_id = name_gen("{name}.{mode}".format(name=tval, mode=mode)) def subscript_or_var(agg, subscript): from pymbolic.primitives import Subscript, Variable if len(subscript) == 0: return Variable(agg) else: return Subscript(Variable(agg), tuple(map(Variable, subscript))) args = (subscript_or_var(tval, dim_inames), subscript_or_var(new_temporaries[tval].name, hw_inames + dim_inames)) if mode == "spill": args = reversed(args) from loopy.kernel.data import Assignment new_insn = Assignment(*args, id=insn_id) new_instructions.append(new_insn) loop_begin = [EnterLoop(iname=iname) for iname in dim_inames] loop_end = list( reversed([LeaveLoop(iname=iname) for iname in dim_inames])) code_block.extend(loop_begin + [RunInstruction(insn_id=insn_id)] + loop_end) if new_temporaries[tval].orig_temporary.is_local: local_temporaries.add(new_temporaries[tval].name) # After loading / before spilling local temporaries, we need to # insert a barrier. if local_temporaries: if mode == "load": subkernel_prolog.append( Barrier(kind="local", comment="for loads of {0}".format(", ".join( sorted(local_temporaries))))) else: subkernel_epilog.insert( 0, Barrier(kind="local", comment="for spills of {0}".format(", ".join( sorted(local_temporaries))))) return new_kernel