Example #1
0
def test_small_batched_matvec(ctx_factory):
    dtype = np.float32
    ctx = ctx_factory()

    order = "C"

    K = 9997  # noqa
    Np = 36  # noqa

    knl = lp.make_kernel(
        "{[i,j,k]: 0<=k<K and 0<= i,j < %d}" % Np,
        ["result[k, i] = sum(j, d[i, j]*f[k, j])"], [
            lp.GlobalArg("d", dtype, shape=(Np, Np), order=order),
            lp.GlobalArg("f", dtype, shape=("K", Np), order=order),
            lp.GlobalArg("result", dtype, shape=("K", Np), order=order),
            lp.ValueArg("K", np.int32, approximately=1000),
        ],
        name="batched_matvec",
        assumptions="K>=1")

    seq_knl = knl

    align_bytes = 64
    knl = lp.add_prefetch(knl, 'd[:,:]', default_tag="l.auto")
    pad_mult = lp.find_padding_multiple(knl, "f", 0, align_bytes)
    knl = lp.split_array_dim(knl, ("f", 0), pad_mult)
    knl = lp.add_padding(knl, "f", 0, align_bytes)

    lp.auto_test_vs_ref(seq_knl,
                        ctx,
                        knl,
                        op_count=[K * 2 * Np**2 / 1e9],
                        op_label=["GFlops"],
                        parameters=dict(K=K))
Example #2
0
def test_small_batched_matvec(ctx_factory):
    dtype = np.float32
    ctx = ctx_factory()

    order = "C"

    K = 9997  # noqa
    Np = 36  # noqa

    knl = lp.make_kernel(
            "{[i,j,k]: 0<=k<K and 0<= i,j < %d}" % Np,
            [
                "result[k, i] = sum(j, d[i, j]*f[k, j])"
                ],
            [
                lp.GlobalArg("d", dtype, shape=(Np, Np), order=order),
                lp.GlobalArg("f", dtype, shape=("K", Np), order=order),
                lp.GlobalArg("result", dtype, shape=("K", Np), order=order),
                lp.ValueArg("K", np.int32, approximately=1000),
                ], name="batched_matvec", assumptions="K>=1")

    seq_knl = knl

    align_bytes = 64
    knl = lp.add_prefetch(knl, 'd[:,:]')
    pad_mult = lp.find_padding_multiple(knl, "f", 0, align_bytes)
    knl = lp.split_array_dim(knl, ("f", 0), pad_mult)
    knl = lp.add_padding(knl, "f", 0, align_bytes)

    lp.auto_test_vs_ref(seq_knl, ctx, knl,
            op_count=[K*2*Np**2/1e9], op_label=["GFlops"],
            parameters=dict(K=K))
Example #3
0
    def variant_fancy_padding(knl):
        knl = lp.tag_inames(knl, dict(n="l.0"))

        pad_mult = lp.find_padding_multiple(knl, "u", 1, 32)

        arg_names = [
                prefix+name
                for name in ["u", "v", "w", "p"]
                for prefix in ["", "rhs"]]

        knl = lp.split_array_dim(knl, [(nm, 0) for nm in arg_names], pad_mult)

        return knl
Example #4
0
    def variant_fancy_padding(knl):
        knl = lp.tag_inames(knl, dict(n="l.0"))

        pad_mult = lp.find_padding_multiple(knl, "u", 1, 32)

        arg_names = [
                prefix+name
                for name in ["u", "v", "w", "p"]
                for prefix in ["", "rhs"]]

        knl = lp.split_array_dim(knl, [(nm, 0) for nm in arg_names], pad_mult)

        return knl