Example #1
0
def train(model, optimizer, criterions, trainloader, epoch, scheduler, data):
    global l_avg, totalclasswise_pixel_acc, totalclasswise_gtpixels, totalclasswise_predpixels
    global steps

    model.train()

    for i, (images, sbd_labels, lip_labels) in enumerate(trainloader):
        sbd_valid_pixel = float(
            (sbd_labels.data != criterions[0].ignore_index).long().sum())
        lip_valid_pixel = float(
            (lip_labels.data != criterions[1].ignore_index).long().sum())

        images = images.to(device)
        sbd_labels = sbd_labels.to(device)
        lip_labels = lip_labels.to(device)

        sbd_outputs, lip_outputs = model(images, task=2)
        sbd_loss = criterions[0](sbd_outputs, sbd_labels)

        classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat(
            [sbd_outputs], sbd_labels, data.n_classes[0])
        classwise_pixel_acc = torch.FloatTensor([classwise_pixel_acc])
        classwise_gtpixels = torch.FloatTensor([classwise_gtpixels])
        classwise_predpixels = torch.FloatTensor([classwise_predpixels])

        totalclasswise_pixel_acc[0] += classwise_pixel_acc.sum(0).data.numpy()
        totalclasswise_gtpixels[0] += classwise_gtpixels.sum(0).data.numpy()
        totalclasswise_predpixels[0] += classwise_predpixels.sum(
            0).data.numpy()

        sbd_total_loss = sbd_loss.sum()
        sbd_total_loss = sbd_total_loss / float(sbd_valid_pixel)
        sbd_total_loss.backward(retain_graph=True)

        lip_loss = criterions[1](lip_outputs, lip_labels)

        classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat(
            [lip_outputs], lip_labels, data.n_classes[1])
        classwise_pixel_acc = torch.FloatTensor([classwise_pixel_acc])
        classwise_gtpixels = torch.FloatTensor([classwise_gtpixels])
        classwise_predpixels = torch.FloatTensor([classwise_predpixels])

        totalclasswise_pixel_acc[1] += classwise_pixel_acc.sum(0).data.numpy()
        totalclasswise_gtpixels[1] += classwise_gtpixels.sum(0).data.numpy()
        totalclasswise_predpixels[1] += classwise_predpixels.sum(
            0).data.numpy()

        lip_total_loss = lip_loss.sum()
        lip_total_loss = lip_total_loss / float(lip_valid_pixel)
        lip_total_loss.backward()

        l_avg[0] += sbd_loss.sum().data.cpu().numpy()
        steps[0] += sbd_valid_pixel
        l_avg[1] += lip_loss.sum().data.cpu().numpy()
        steps[1] += lip_valid_pixel

        optimizer.step()
        optimizer.zero_grad()
        scheduler.step()
Example #2
0
def val(model, criterions, valloader, epoch, data):
    global l_avg_test, totalclasswise_pixel_acc_test, totalclasswise_gtpixels_test, totalclasswise_predpixels_test
    global steps_test

    model.eval()

    for i, (images, sbd_labels, lip_labels) in enumerate(valloader):
        sbd_valid_pixel = float(
            (sbd_labels.data != criterions[0].ignore_index).long().sum())
        lip_valid_pixel = float(
            (lip_labels.data != criterions[1].ignore_index).long().sum())

        images = images.to(device)
        sbd_labels = sbd_labels.to(device)
        lip_labels = lip_labels.to(device)

        with torch.no_grad():
            sbd_outputs, lip_outputs = model(images, task=2)
            sbd_loss = criterions[0](sbd_outputs, sbd_labels)
            lip_loss = criterions[1](lip_outputs, lip_labels)

            classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat(
                [sbd_outputs], sbd_labels, data.n_classes[0])
            classwise_pixel_acc = torch.FloatTensor([classwise_pixel_acc])
            classwise_gtpixels = torch.FloatTensor([classwise_gtpixels])
            classwise_predpixels = torch.FloatTensor([classwise_predpixels])

            totalclasswise_pixel_acc_test[0] += classwise_pixel_acc.sum(
                0).data.numpy()
            totalclasswise_gtpixels_test[0] += classwise_gtpixels.sum(
                0).data.numpy()
            totalclasswise_predpixels_test[0] += classwise_predpixels.sum(
                0).data.numpy()

            classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat(
                [lip_outputs], lip_labels, data.n_classes[1])
            classwise_pixel_acc = torch.FloatTensor([classwise_pixel_acc])
            classwise_gtpixels = torch.FloatTensor([classwise_gtpixels])
            classwise_predpixels = torch.FloatTensor([classwise_predpixels])

            totalclasswise_pixel_acc_test[1] += classwise_pixel_acc.sum(
                0).data.numpy()
            totalclasswise_gtpixels_test[1] += classwise_gtpixels.sum(
                0).data.numpy()
            totalclasswise_predpixels_test[1] += classwise_predpixels.sum(
                0).data.numpy()

            l_avg_test[0] += sbd_loss.sum().data.cpu().numpy()
            steps_test[0] += sbd_valid_pixel
            l_avg_test[1] += lip_loss.sum().data.cpu().numpy()
            steps_test[1] += lip_valid_pixel
Example #3
0
def val(model, criterion, valloader, epoch, data):
    global l_avg_test, totalclasswise_pixel_acc_test, totalclasswise_gtpixels_test, totalclasswise_predpixels_test
    global steps_test

    model.eval()

    for i, (images, labels) in enumerate(valloader):
        images = images.to(device)
        labels = labels.to(device)

        with torch.no_grad():
            outputs = model(images)
            loss = criterion(outputs, labels)

            total_valid_pixel = total_valid_pixel = float(
                (labels.data != criterion.ignore_index).long().sum())
            classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat(
                [outputs], labels, data.n_classes)
            classwise_pixel_acc = torch.FloatTensor(classwise_pixel_acc)
            classwise_gtpixels = torch.FloatTensor(classwise_gtpixels)
            classwise_predpixels = torch.FloatTensor(classwise_predpixels)

            l_avg_test += loss.sum().data.cpu().numpy()
            steps_test += total_valid_pixel
            totalclasswise_pixel_acc_test += classwise_pixel_acc.numpy()
            totalclasswise_gtpixels_test += classwise_gtpixels.numpy()
            totalclasswise_predpixels_test += classwise_predpixels.numpy()
Example #4
0
def train(model, optimizer, criterion, trainloader, epoch, scheduler, data):
    global l_avg, totalclasswise_pixel_acc, totalclasswise_gtpixels, totalclasswise_predpixels
    global steps

    model.train()

    for i, (images, labels) in enumerate(trainloader):
        images = images.to(device)
        labels = labels.to(device)

        outputs = model(images)
        loss = criterion(outputs, labels)

        total_valid_pixel = float(
            (labels.data != criterion.ignore_index).long().sum())

        total_loss = loss.sum()
        total_loss = total_loss / float(total_valid_pixel)
        total_loss.backward()

        classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat(
            [outputs], labels, data.n_classes)
        classwise_pixel_acc = torch.FloatTensor(classwise_pixel_acc)
        classwise_gtpixels = torch.FloatTensor(classwise_gtpixels)
        classwise_predpixels = torch.FloatTensor(classwise_predpixels)

        l_avg += loss.sum().data.cpu().numpy()
        steps += total_valid_pixel
        totalclasswise_pixel_acc += classwise_pixel_acc.numpy()
        totalclasswise_gtpixels += classwise_gtpixels.numpy()
        totalclasswise_predpixels += classwise_predpixels.numpy()

        optimizer.step()
        optimizer.zero_grad()
        scheduler.step()
Example #5
0
def val(model, criterions, valloader, epoch, data):
    global l_avg_test, totalclasswise_pixel_acc_test, totalclasswise_gtpixels_test, totalclasswise_predpixels_test
    global steps_test

    model.eval()

    for i, (images, labels, task) in enumerate(valloader):
        sbd_index = task == 0
        lip_index = task == 1

        sbd_images = images[sbd_index]
        lip_images = images[lip_index]
        sbd_labels = labels[sbd_index]
        lip_labels = labels[lip_index]

        num_sbd = sbd_images.size(0)
        num_lip = lip_images.size(0)

        sbd_valid_pixel = float(
            (sbd_labels.data != criterions[0].ignore_index).long().sum())
        lip_valid_pixel = float(
            (lip_labels.data != criterions[1].ignore_index).long().sum())

        sbd_images = sbd_images.to(device)
        lip_images = lip_images.to(device)
        sbd_labels = sbd_labels.to(device)
        lip_labels = lip_labels.to(device)

        with torch.no_grad():
            if num_sbd > 0:
                sbd_outputs = model(sbd_images, 0)
                loss0 = criterions[0](sbd_outputs, sbd_labels)

                classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat(
                    [sbd_outputs], sbd_labels, data.n_classes[0])
                classwise_pixel_acc = torch.FloatTensor([classwise_pixel_acc])
                classwise_gtpixels = torch.FloatTensor([classwise_gtpixels])
                classwise_predpixels = torch.FloatTensor(
                    [classwise_predpixels])

                l_avg_test[0] += loss0.sum().data.cpu().numpy()
                steps_test[0] += sbd_valid_pixel
                totalclasswise_pixel_acc_test[0] += classwise_pixel_acc.sum(
                    0).data.numpy()
                totalclasswise_gtpixels_test[0] += classwise_gtpixels.sum(
                    0).data.numpy()
                totalclasswise_predpixels_test[0] += classwise_predpixels.sum(
                    0).data.numpy()
            if num_lip > 0:
                lip_outputs = model(lip_images, 1)
                loss1 = criterions[1](lip_outputs, lip_labels)

                classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat(
                    [lip_outputs], lip_labels, data.n_classes[1])
                classwise_pixel_acc = torch.FloatTensor([classwise_pixel_acc])
                classwise_gtpixels = torch.FloatTensor([classwise_gtpixels])
                classwise_predpixels = torch.FloatTensor(
                    [classwise_predpixels])

                l_avg_test[1] += loss1.sum().data.cpu().numpy()
                steps_test[1] += lip_valid_pixel
                totalclasswise_pixel_acc_test[1] += classwise_pixel_acc.sum(
                    0).data.numpy()
                totalclasswise_gtpixels_test[1] += classwise_gtpixels.sum(
                    0).data.numpy()
                totalclasswise_predpixels_test[1] += classwise_predpixels.sum(
                    0).data.numpy()
Example #6
0
def train(model, optimizers, criterions, trainloader, epoch, schedulers, data,
          counter_sizes):
    global l_avg, totalclasswise_pixel_acc, totalclasswise_gtpixels, totalclasswise_predpixels
    global steps
    global counters, bug_counter

    model.train()

    if args.freeze:
        model.apply(set_bn_eval)

    for i, (images, labels, task) in enumerate(trainloader):
        sbd_index = task == 0
        lip_index = task == 1

        sbd_images = images[sbd_index]
        lip_images = images[lip_index]
        sbd_labels = labels[sbd_index]
        lip_labels = labels[lip_index]

        num_sbd = sbd_images.size(0)
        num_lip = lip_images.size(0)

        sbd_valid_pixel = float(
            (sbd_labels.data != criterions[0].ignore_index).long().sum())
        lip_valid_pixel = float(
            (lip_labels.data != criterions[1].ignore_index).long().sum())

        sbd_images = sbd_images.to(device)
        lip_images = lip_images.to(device)
        sbd_labels = sbd_labels.to(device)
        lip_labels = lip_labels.to(device)

        # Increment common CNN's counter for each image
        counters[0] += images.size(0)
        counters[1] += num_sbd
        counters[2] += num_lip

        if num_sbd > 0:
            sbd_outputs = model(sbd_images, 0)
            loss0 = criterions[0](sbd_outputs, sbd_labels)

            total_loss0 = loss0.sum()
            total_loss0 = total_loss0 / sbd_valid_pixel
            total_loss0 = total_loss0 / float(args.iter_size)
            total_loss0.backward()

            classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat(
                [sbd_outputs], sbd_labels, data.n_classes[0])
            classwise_pixel_acc = torch.FloatTensor([classwise_pixel_acc])
            classwise_gtpixels = torch.FloatTensor([classwise_gtpixels])
            classwise_predpixels = torch.FloatTensor([classwise_predpixels])

            l_avg[0] += loss0.sum().data.cpu().numpy()
            steps[0] += sbd_valid_pixel
            totalclasswise_pixel_acc[0] += classwise_pixel_acc.sum(
                0).data.numpy()
            totalclasswise_gtpixels[0] += classwise_gtpixels.sum(
                0).data.numpy()
            totalclasswise_predpixels[0] += classwise_predpixels.sum(
                0).data.numpy()
        if num_lip > 0:
            lip_outputs = model(lip_images, 1)
            loss1 = criterions[1](lip_outputs, lip_labels)

            total_loss1 = loss1.sum()
            total_loss1 = total_loss1 / lip_valid_pixel
            total_loss1 = total_loss1 / float(args.iter_size)
            total_loss1.backward()

            classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat(
                [lip_outputs], lip_labels, data.n_classes[1])
            classwise_pixel_acc = torch.FloatTensor([classwise_pixel_acc])
            classwise_gtpixels = torch.FloatTensor([classwise_gtpixels])
            classwise_predpixels = torch.FloatTensor([classwise_predpixels])

            l_avg[1] += loss1.sum().data.cpu().numpy()
            steps[1] += lip_valid_pixel
            totalclasswise_pixel_acc[1] += classwise_pixel_acc.sum(
                0).data.numpy()
            totalclasswise_gtpixels[1] += classwise_gtpixels.sum(
                0).data.numpy()
            totalclasswise_predpixels[1] += classwise_predpixels.sum(
                0).data.numpy()

        for j in range(3):
            if counters[j] >= counter_sizes[j]:
                optimizers[j].step()
                optimizers[j].zero_grad()
                schedulers[j].step()
                counters[j] -= counter_sizes[j]
Example #7
0
def val(model, criterion, valloader, epoch, data):
    print('=' * 10, 'Validate step', '=' * 10, '\n')

    global l_avg_test, totalclasswise_pixel_acc_test, totalclasswise_gtpixels_test, totalclasswise_predpixels_test
    global steps_test

    model.eval()

    for i, (images, labels) in enumerate(valloader):
        images = images.to(device)
        labels = labels.to(device)

        with torch.no_grad():
            outputs = model(images, labels)

            loss = criterion(outputs, labels)
            total_valid_pixel = torch.sum(
                labels.data != criterion.ignore_index)
            classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat(
                [outputs], labels, data.n_classes)

            total_valid_pixel = torch.FloatTensor([total_valid_pixel
                                                   ]).to(device)
            classwise_pixel_acc = torch.FloatTensor([classwise_pixel_acc
                                                     ]).to(device)
            classwise_gtpixels = torch.FloatTensor([classwise_gtpixels
                                                    ]).to(device)
            classwise_predpixels = torch.FloatTensor([classwise_predpixels
                                                      ]).to(device)

            total_valid_pixel = float(
                total_valid_pixel.sum(0).data.cpu().numpy())

            l_avg_test += loss.sum().data.cpu().numpy()
            steps_test += total_valid_pixel
            totalclasswise_pixel_acc_test += classwise_pixel_acc.sum(
                0).data.cpu().numpy()
            totalclasswise_gtpixels_test += classwise_gtpixels.sum(
                0).data.cpu().numpy()
            totalclasswise_predpixels_test += classwise_predpixels.sum(
                0).data.cpu().numpy()

            if (i + 1) % 200 == 0:
                pickle.dump(
                    images[0].cpu().numpy(),
                    open(
                        os.path.join(
                            ROOT_ADDRESS, "results_parts/saved_val_images/" +
                            str(epoch) + "_" + str(i) + "_input.p"), "wb"))

                pickle.dump(
                    np.transpose(
                        data.decode_segmap(
                            outputs[0].data.cpu().numpy().argmax(0)),
                        [2, 0, 1]),
                    open(
                        os.path.join(
                            ROOT_ADDRESS, "results_parts/saved_val_images/" +
                            str(epoch) + "_" + str(i) + "_output.p"), "wb"))

                pickle.dump(
                    np.transpose(data.decode_segmap(labels[0].cpu().numpy()),
                                 [2, 0, 1]),
                    open(
                        os.path.join(
                            ROOT_ADDRESS, "results_parts/saved_val_images/" +
                            str(epoch) + "_" + str(i) + "_target.p"), "wb"))
Example #8
0
def train(model, optimizer, criterion, trainloader, epoch, scheduler, data):
    print('=' * 10, 'Train step', '=' * 10, '\n')

    global l_avg, totalclasswise_pixel_acc, totalclasswise_gtpixels, totalclasswise_predpixels
    global steps

    model.train()

    if args.freeze:
        model.apply(set_bn_eval)

    for i, (images, labels) in enumerate(trainloader):
        images = images.to(device)
        labels = labels.to(device)
        # assert images.size()[2:] == labels.size()[1:]
        # print('Inputs size =', images.size())
        # print('Labels size =', labels.size())

        if i % args.iter_size == 0:
            optimizer.zero_grad()

        outputs = model(images, labels)
        # assert outputs.size()[2:] == labels.size()[1:]
        # assert outputs.size(1) == data.n_classes
        # print('Outputs size =', outputs.size())

        loss = criterion(outputs, labels)

        total_valid_pixel = torch.sum(labels.data != criterion.ignore_index)
        classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat(
            [outputs], labels, data.n_classes)

        total_valid_pixel = torch.FloatTensor([total_valid_pixel]).to(device)
        classwise_pixel_acc = torch.FloatTensor([classwise_pixel_acc
                                                 ]).to(device)
        classwise_gtpixels = torch.FloatTensor([classwise_gtpixels]).to(device)
        classwise_predpixels = torch.FloatTensor([classwise_predpixels
                                                  ]).to(device)

        total_valid_pixel = float(total_valid_pixel.sum(0).data.cpu().numpy())

        total_loss = loss.sum()
        total_loss = total_loss / float(total_valid_pixel)
        total_loss = total_loss / float(args.iter_size)
        total_loss.backward()

        if i % args.iter_size == 0:
            optimizer.step()

        l_avg += loss.sum().data.cpu().numpy()
        steps += total_valid_pixel
        totalclasswise_pixel_acc += classwise_pixel_acc.sum(
            0).data.cpu().numpy()
        totalclasswise_gtpixels += classwise_gtpixels.sum(0).data.cpu().numpy()
        totalclasswise_predpixels += classwise_predpixels.sum(
            0).data.cpu().numpy()

        if (i + 1) % args.epoch_log_size == 0:
            print("Epoch [%d/%d] Loss: %.4f" %
                  (epoch + 1, args.epochs, loss.sum().item()))

        if (i + 1) % args.iter_size == 0:
            scheduler.step()

        if (i + 1) % args.log_size == 0:
            pickle.dump(
                images[0].cpu().numpy(),
                open(
                    os.path.join(
                        ROOT_ADDRESS, "results_parts/saved_train_images/" +
                        str(epoch) + "_" + str(i) + "_input.p"), "wb"))

            pickle.dump(
                np.transpose(
                    data.decode_segmap(
                        outputs[0].data.cpu().numpy().argmax(0)), [2, 0, 1]),
                open(
                    os.path.join(
                        ROOT_ADDRESS, "results_parts/saved_train_images/" +
                        str(epoch) + "_" + str(i) + "_output.p"), "wb"))

            pickle.dump(
                np.transpose(data.decode_segmap(labels[0].cpu().numpy()),
                             [2, 0, 1]),
                open(
                    os.path.join(
                        ROOT_ADDRESS, "results_parts/saved_train_images/" +
                        str(epoch) + "_" + str(i) + "_target.p"), "wb"))