Example #1
0
def GetEDLLoss(pred, true):
    if type(pred) is not torch.Tensor:
        pred = torch.Tensor(pred).float().cuda()
    elif pred.is_cuda is False:
        pred = pred.cuda()

    if type(true) is not torch.Tensor:
        true = torch.Tensor(true).float().cuda()
    elif true.is_cuda is False:
        true = true.cuda()

    loss = EDL_Loss()(true, pred).item()

    return loss
Example #2
0
from torch import optim
import joblib
import os
import argparse
import numpy as np

from model import CNNText
from util import PyTorchParameterList2NPArrayList
from loss import EDL_Loss

# config #
inner_rate = 0.01
outer_rate = 0.1
n_subsets = 5
ntrain = 10
loss_fn = EDL_Loss()

print('[Start maml ...]')

parser = argparse.ArgumentParser()
parser.add_argument("--file_path",
                    help="saving root path of raw data",
                    default='./test')
parser.add_argument("--seed",
                    help="reproducible experiment with seeds",
                    type=int)
parser.add_argument("--out_dim", help="output dimension", type=int, default=6)
parser.add_argument('--niterations',
                    help='number of iterations',
                    default=1000,
                    type=int)