def testFieldAngleToVector(self): sp00 = SpherePoint(0, 0, degrees) degList = (-90, -89.9, -20, 0, 10, 89.9, 90) for xdeg, ydeg, flipX in itertools.product(degList, degList, (False, True)): with self.subTest(xdeg=xdeg, ydeg=ydeg, flipX=flipX): xrad = xdeg * RAD_PER_DEG signx = -1 if flipX else 1 testOrientation = xdeg != 0 or ydeg != 0 yrad = ydeg * RAD_PER_DEG fieldAngle = (xrad, yrad) vector = coordUtils.fieldAngleToVector(fieldAngle, flipX) self.assertAlmostEqual(np.linalg.norm(vector), 1) if testOrientation: # Orientation should match. orientationFromFieldAngle = math.atan2(yrad, signx*xrad)*radians # Field angle x = vector y, field angle y = vector z. orientationFromVector = math.atan2(vector[2], vector[1])*radians self.assertAnglesAlmostEqual(orientationFromVector, orientationFromFieldAngle) # Now test as spherical geometry. sp = SpherePoint(Vector3d(*vector)) separation = sp00.separation(sp) predictedSeparation = math.hypot(xrad, yrad)*radians self.assertAnglesAlmostEqual(predictedSeparation, separation) if testOrientation: bearing = sp00.bearingTo(sp) self.assertAnglesAlmostEqual(orientationFromFieldAngle, bearing) # Test round trip through vectorToFieldAngle. fieldAngleFromVector = coordUtils.vectorToFieldAngle(vector, flipX) np.testing.assert_allclose(fieldAngleFromVector, fieldAngle, atol=1e-15)
def testBearingToValueSingular(self): """White-box test: bearingTo() may be unstable if points are near opposite poles. This test is motivated by an error analysis of the `bearingTo` implementation. It may become irrelevant if the implementation changes. """ southPole = SpherePoint(0.0*degrees, self.nextUp(-90.0*degrees)) northPoleSame = SpherePoint(0.0*degrees, self.nextDown(90.0*degrees)) # Don't let it be on exactly the opposite side. northPoleOpposite = SpherePoint( 180.0*degrees, self.nextDown(northPoleSame.getLatitude())) self.assertAnglesAlmostEqual(southPole.bearingTo(northPoleSame), geom.HALFPI*geom.radians) self.assertAnglesAlmostEqual(southPole.bearingTo(northPoleOpposite), (geom.PI + geom.HALFPI)*geom.radians)
def testBearingToValueOnEquator(self): """Test if bearingTo() returns the expected value from a point on the equator """ lon0 = 90.0 lat0 = 0.0 # These tests only work from the equator. arcLen = 10.0 trials = [ # Along celestial equator dict(lon=lon0, lat=lat0, bearing=0.0, lonEnd=lon0+arcLen, latEnd=lat0), # Along a meridian dict(lon=lon0, lat=lat0, bearing=90.0, lonEnd=lon0, latEnd=lat0+arcLen), # 180 degree arc (should go to antipodal point) dict(lon=lon0, lat=lat0, bearing=45.0, lonEnd=lon0+180.0, latEnd=-lat0), # dict(lon=lon0, lat=lat0, bearing=45.0, lonEnd=lon0+90.0, latEnd=lat0 + 45.0), dict(lon=lon0, lat=lat0, bearing=225.0, lonEnd=lon0-90.0, latEnd=lat0 - 45.0), dict(lon=lon0, lat=np.nextafter(-90.0, inf), bearing=90.0, lonEnd=lon0, latEnd=0.0), dict(lon=lon0, lat=np.nextafter(-90.0, inf), bearing=0.0, lonEnd=lon0 + 90.0, latEnd=0.0), # Argument at a pole should work dict(lon=lon0, lat=lat0, bearing=270.0, lonEnd=lon0, latEnd=-90.0), # Support for non-finite values dict(lon=lon0, lat=nan, bearing=nan, lonEnd=lon0, latEnd=45.0), dict(lon=lon0, lat=lat0, bearing=nan, lonEnd=nan, latEnd=90.0), dict(lon=inf, lat=lat0, bearing=nan, lonEnd=lon0, latEnd=42.0), dict(lon=lon0, lat=lat0, bearing=nan, lonEnd=-inf, latEnd=42.0), ] for trial in trials: origin = SpherePoint(trial['lon']*degrees, trial['lat']*degrees) end = SpherePoint(trial['lonEnd']*degrees, trial['latEnd']*degrees) bearing = origin.bearingTo(end) self.assertIsInstance(bearing, geom.Angle) if origin.isFinite() and end.isFinite(): self.assertGreaterEqual(bearing.asDegrees(), 0.0) self.assertLess(bearing.asDegrees(), 360.0) if origin.separation(end).asDegrees() != 180.0: if not math.isnan(trial['bearing']): self.assertAlmostEqual( trial['bearing'], bearing.asDegrees(), 12) else: self.assertTrue(math.isnan(bearing.asRadians()))
def testBearingToFromPole(self): """Test if bearingTo() returns the expected value from a point at a pole """ for long0Deg in (0, 55, 270): for atSouthPole in (False, True): lat0Deg = -90 if atSouthPole else 90 sp0 = SpherePoint(long0Deg, lat0Deg, degrees) for long1Deg in (0, 55, 270): for lat1Deg in (-89, 0, 89): sp1 = SpherePoint(long1Deg, lat1Deg, degrees) desiredBearing = ((long1Deg - long0Deg) - 90) * degrees if atSouthPole: desiredBearing *= -1 measuredBearing = sp0.bearingTo(sp1) self.assertAnglesAlmostEqual(desiredBearing, measuredBearing)
def testBearingToValueSameLongitude(self): """Test that bearingTo() returns +/- 90 for two points on the same longitude """ for longDeg in (0, 55, 270): for lat0Deg in (-90, -5, 0, 44, 90): sp0 = SpherePoint(longDeg, lat0Deg, degrees) for lat1Deg in (-90, -41, 1, 41, 90): if lat0Deg == lat1Deg: continue sp1 = SpherePoint(longDeg, lat1Deg, degrees) if sp0.atPole() and sp1.atPole(): # the points are at opposite poles; any bearing may be returned continue bearing = sp0.bearingTo(sp1) if lat1Deg > lat0Deg: self.assertAnglesAlmostEqual(bearing, 90 * degrees) else: self.assertAnglesAlmostEqual(bearing, -90 * degrees)
def testOffsetValue(self): """Test if offset() returns the expected value. """ # This should cover arcs over the meridian, across the pole, etc. for lon1, lat1 in self._dataset: point1 = SpherePoint(lon1, lat1) for lon2, lat2 in self._dataset: if lon1 == lon2 and lat1 == lat2: continue point2 = SpherePoint(lon2, lat2) bearing = point1.bearingTo(point2) distance = point1.separation(point2) # offsetting point1 by bearing and distance should produce the same result as point2 newPoint = point1.offset(bearing, distance) self.assertIsInstance(newPoint, SpherePoint) self.assertSpherePointsAlmostEqual(point2, newPoint) if newPoint.atPole(): self.assertAnglesAlmostEqual(newPoint.getLongitude(), 0*degrees) # measuring the separation and bearing from point1 to the new point # should produce the requested separation and bearing measuredDistance = point1.separation(newPoint) self.assertAnglesAlmostEqual(measuredDistance, distance) if abs(measuredDistance.asDegrees() - 180) > 1e-5: # The two points are not opposite each other on the sphere, # so the bearing has a well defined value measuredBearing = point1.bearingTo(newPoint) self.assertAnglesAlmostEqual(measuredBearing, bearing) # offset by a negative amount in the opposite direction should produce the same result newPoint2 = point1.offset(bearing + 180 * degrees, -distance) self.assertIsInstance(newPoint2, SpherePoint) # check angular separation (longitude is checked below) self.assertSpherePointsAlmostEqual(newPoint, newPoint2) if point1.isFinite() and point2.isFinite(): if not point2.atPole(): self.assertAnglesAlmostEqual( point2.getLongitude(), newPoint.getLongitude()) self.assertAnglesAlmostEqual( point2.getLongitude(), newPoint2.getLongitude()) self.assertAnglesAlmostEqual( point2.getLatitude(), newPoint.getLatitude()) self.assertAnglesAlmostEqual( point2.getLatitude(), newPoint2.getLatitude()) else: self.assertTrue(math.isnan( newPoint.getLongitude().asRadians())) self.assertTrue(math.isnan( newPoint2.getLongitude().asRadians())) self.assertTrue(math.isnan( newPoint.getLatitude().asRadians())) self.assertTrue(math.isnan( newPoint2.getLatitude().asRadians())) # Test precision near the poles lon = 123.0*degrees almostPole = SpherePoint(lon, self.nextDown(90.0*degrees)) goSouth = almostPole.offset(-90.0*degrees, 90.0*degrees) self.assertAnglesAlmostEqual(lon, goSouth.getLongitude()) self.assertAnglesAlmostEqual(0.0*degrees, goSouth.getLatitude()) goEast = almostPole.offset(0.0*degrees, 90.0*degrees) self.assertAnglesAlmostEqual(lon + 90.0*degrees, goEast.getLongitude()) self.assertAnglesAlmostEqual(0.0*degrees, goEast.getLatitude())