def __init__(self, z=0, t0=0, x0=1, x1=0, c=0, snra=0, sndec=0): """ Parameters ---------- z: float [0] Redshift of the SNIa object to pass to sncosmo. t0: float [0] Time in mjd of phase=0, corresponding to the B-band maximum. x0: float [1] Normalization factor for the lightcurves. x1: float [0] Empirical parameter controlling the stretch in time of the light curves c: float [0] Empirical parameter controlling the colors. snra: float [0] RA in degrees of the SNIa. sndec: float [0] Dec in degrees of the SNIa. """ self.sn_obj = SNObject(snra, sndec) self.sn_obj.set(z=z, t0=t0, x0=x0, x1=x1, c=c, hostebv=0, hostr_v=3.1, mwebv=0, mwr_v=3.1) self.bp_dict = self.lsst_bp_dict
def astro_object(self, idValue, mjdOffset=59580.): """ instance of the catsim representation of the astrophysical object. Parameters ---------- idValue : int, mandatory index of the astro_object mjdOffset : float, optional, defaults to 59580. offset in time parameters in the database for the transient objects Returns ------- Instance of astro_object with parameters from the database Examples -------- >>> sn = reflc.astro_object(idValue=6001163623700) """ df = self.get_params(idValue) sn = SNObject(ra=df.snra.values[0], dec=df.sndec.values[0]) paramDict = dict() for param in ['t0', 'x0', 'x1', 'c']: paramDict[param] = df[param].values paramDict['t0'] += mjdOffset paramDict['z'] = df.redshift.values[0] sn.set(**paramDict) return sn
def SNobj(fieldID, t0, snState=None, peakAbsMagBesselB=-19.3): sn = SNObject(ra=np.degrees(so.ra(fieldID)), dec=np.degrees(so.dec(fieldID))) sn.set(t0=t0) sn.set(z=0.5) sn.set_source_peakabsmag(peakAbsMagBesselB, 'bessellB', 'ab') return sn
def lc(self, idx, maxObsHistID=None): """ Parameters ---------- """ if maxObsHistID is None: maxObsHistID = self.maxObsHistID # obtain the model parameters from the population paramDict = self.population.modelparams(idx) self.model.setModelParameters(**paramDict) myra = paramDict['ra'] mydec = paramDict['dec'] timeRange = (self.model.minMjd, self.model.maxMjd) if None not in timeRange: queryTime = 'expMJD < {1} and expMJD > {0}'.format(timeRange[0], timeRange[1]) df = self.pointings.copy().query(queryTime) else: df = self.pointings.copy() if self.pruneWithRadius: raise ValueError('Not implemented') numObs = len(self.pointings) modelFlux = np.zeros(numObs) fluxerr = np.zeros(numObs) sn = SNObject(myra, mydec) for i, rowtuple in enumerate(df.iterrows()): row = rowtuple[1] # print(row['expMJD'], row['filter'], row['fiveSigmaDepth']) bp = self.bandPasses[row['filter']] modelFlux[i] = self.model.modelFlux(row['expMJD'], bandpassobj=bp) fluxerr[i] = sn.catsimBandFluxError(time=row['expMJD'], bandpassobject=bp, fluxinMaggies=modelFlux[i], m5=row['fiveSigmaDepth']) rng = self.randomState df.reset_index(inplace=True) df['objid'] = np.ones(numObs)*np.int(idx) df['objid'] = df.objid.astype(np.int) df['fluxerr'] = fluxerr deviations = rng.normal(size=len(df)) df['deviations'] = deviations df['zp'] = 0. df['ModelFlux'] = modelFlux df['flux'] = df['ModelFlux'] + df['deviations'] * df['fluxerr'] df['zpsys']= 'ab' df['pid'] = self.pair_method(df.objid, df.obsHistID, self.maxObsHistID) df['pid'] = df.pid.astype(np.int) lc = df[['pid', 'obsHistID', 'objid', 'expMJD', 'filter', 'ModelFlux', 'fieldID', 'flux', 'fluxerr', 'deviations', 'zp', 'zpsys']] lc.set_index('pid', inplace=True) return lc
def load_SNsed(self): """ returns a list of SN seds in `lsst.sims.photUtils.Sed` observed within the spatio-temporal range specified by obs_metadata """ c, x1, x0, t0, _z, ra, dec = self.column_by_name('c'),\ self.column_by_name('x1'),\ self.column_by_name('x0'),\ self.column_by_name('t0'),\ self.column_by_name('redshift'),\ self.column_by_name('raJ2000'),\ self.column_by_name('decJ2000') SNobject = SNObject() raDeg = np.degrees(ra) decDeg = np.degrees(dec) sedlist = [] for i in range(self.numobjs): SNobject.set(z=_z[i], c=c[i], x1=x1[i], t0=t0[i], x0=x0[i]) SNobject.setCoords(ra=raDeg[i], dec=decDeg[i]) SNobject.mwEBVfromMaps() sed = SNobject.SNObjectSED(time=self.mjdobs, bandpass=self.lsstBandpassDict, applyExitinction=True) sedlist.append(sed) return sedlist
def test_attributeDefaults(self): """ Check the defaults and the setter properties for rectifySED and modelOutSideRange """ snobj = SNObject(ra=30., dec=-60., source='salt2') self.assertEqual(snobj.rectifySED, True) self.assertEqual(snobj.modelOutSideTemporalRange, 'zero') snobj.rectifySED = False self.assertFalse(snobj.rectifySED, False) self.assertEqual(snobj.modelOutSideTemporalRange, 'zero')
def test_raisingerror_forunimplementedmodelOutSideRange(self): """ check that correct error is raised if the user tries to assign an un-implemented model value to `sims.catUtils.supernovae.SNObject.modelOutSideTemporalRange` """ snobj = SNObject(ra=30., dec=-60., source='salt2') assert snobj.modelOutSideTemporalRange == 'zero' with self.assertRaises(ValueError) as context: snobj.modelOutSideTemporalRange = 'False' self.assertEqual('Model not implemented, defaulting to zero method\n', context.exception.args[0])
def calc_sne_mags(self, obs_mjd, obs_filter): wavelen_max = 1800. wavelen_min = 30. wavelen_step = 0.1 sn_magnorm_list = [] sn_sed_names = [] add_to_cat_list = [] for idx in range(len(self.truth_cat)): sed_mjd = obs_mjd - self.truth_cat['t_delay'].iloc[idx] current_sn_obj = SNObject(ra=self.truth_cat['ra'].iloc[idx], dec=self.truth_cat['dec'].iloc[idx]) current_sn_obj.set(z=self.truth_cat['redshift'].iloc[idx], t0=self.truth_cat['t0'].iloc[idx], x0=self.truth_cat['x0'].iloc[idx], x1=self.truth_cat['x1'].iloc[idx], c=self.truth_cat['c'].iloc[idx]) # Following follows from # https://github.com/lsst/sims_catUtils/blob/master/python/lsst/sims/catUtils/mixins/sncat.py sn_sed_obj = current_sn_obj.SNObjectSourceSED( time=sed_mjd, wavelen=np.arange(wavelen_min, wavelen_max, wavelen_step)) flux_500 = sn_sed_obj.flambda[np.where( sn_sed_obj.wavelen >= 499.99)][0] if flux_500 > 0.: sn_magnorm = sn_sed_obj.calcMag(bandpass=self.imSimBand) sn_name = None if self.write_sn_sed: sn_name = '%s/specFileGLSN_%s_%s_%.4f.txt' % ( self.sed_folder_name, self.truth_cat['dc2_sys_id'].iloc[idx], self.truth_cat['image_number'].iloc[idx], obs_mjd) sed_filename = '%s/%s' % (self.out_dir, sn_name) sn_sed_obj.writeSED(sed_filename) with open(sed_filename, 'rb') as f_in, gzip.open( str(sed_filename + '.gz'), 'wb') as f_out: shutil.copyfileobj(f_in, f_out) os.remove(sed_filename) sn_magnorm_list.append(sn_magnorm) sn_sed_names.append(sn_name + '.gz') add_to_cat_list.append(idx) return add_to_cat_list, np.array(sn_magnorm_list), sn_sed_names
def test_rectifiedSED(self): """ Check for an extreme case that the SN seds are being rectified. This is done by setting up an extreme case where there will be negative seds, and checking that this is indeed the case, and checking that they are not negative if rectified. """ snobj = SNObject(ra=30., dec=-60., source='salt2') snobj.set(z=0.96, t0=self.mjdobs, x1=-3., x0=1.8e-6) snobj.rectifySED = False times = np.arange(self.mjdobs - 50., self.mjdobs + 150., 1.) badTimes = [] for time in times: sed = snobj.SNObjectSED(time=time, bandpass=self.lsstBandPass['r']) if any(sed.flambda < 0.): badTimes.append(time) # Check that there are negative SEDs assert(len(badTimes) > 0) snobj.rectifySED = True for time in badTimes: sed = snobj.SNObjectSED(time=time, bandpass=self.lsstBandPass['r']) self.assertGreaterEqual(sed.calcADU(bandpass=self.lsstBandPass['r'], photParams=self.rectify_photParams), 0.) self.assertFalse(any(sed.flambda < 0.))
def get_phosimVars(self): """ Obtain variables sedFilepath to be used to obtain unique filenames for each SED for phoSim and MagNorm which is also used. Note that aside from acting as a getter, this also writes spectra to `self.sn_sedfile_prefix`snid_mjd_band.dat for each observation of interest """ # construct the unique filename # method: snid_mjd(to 4 places of decimal)_bandpassname mjd = "_{:0.4f}_".format(self.mjdobs) mjd += self.obs_metadata.bandpass + '.dat' fnames = np.array([ self.sn_sedfile_prefix + str(int(elem)) + mjd if isinstance( elem, numbers.Number) else self.sn_sedfile_prefix + str(elem) + mjd for elem in self.column_by_name('snid') ], dtype='str') c, x1, x0, t0, z = self.column_by_name('c'),\ self.column_by_name('x1'),\ self.column_by_name('x0'),\ self.column_by_name('t0'),\ self.column_by_name('redshift') bp = Bandpass() bp.imsimBandpass() magNorms = np.zeros(len(fnames)) snobject = SNObject() snobject.rectifySED = True for i in range(len(self.column_by_name('snid'))): # if t0 is nan, this was set by the catalog for dim SN, or SN # outside redshift range, We will not provide a SED file for these if np.isnan(t0[i]): magNorms[i] = np.nan fnames[i] = None else: snobject.set(c=c[i], x1=x1[i], x0=x0[i], t0=t0[i], z=z[i]) if snobject.modelOutSideTemporalRange == 'zero': if self.mjdobs > snobject.maxtime( ) or self.mjdobs < snobject.mintime(): magNorms[i] = np.nan fnames[i] = None # SED in rest frame sed = snobject.SNObjectSourceSED(time=self.mjdobs) try: magNorms[i] = sed.calcMag(bandpass=bp) except: # sed.flambda = 1.0e-20 magNorms[i] = 1000. # sed.calcMag(bandpass=bp) if self.writeSedFile: sed.writeSED(fnames[i]) return (fnames, magNorms)
def SN(self): """ `lsst.sims.catsim.SNObject` instance with peakMJD set to t0 """ if self.snState is not None: return SNObject.fromSNState(self.snState) sn = SNObject(ra=self.radeg, dec=self.decdeg) sn.set(t0=self.t0) sn.set(z=0.5) sn.set_source_peakabsmag(self.bessellBpeakabsmag, 'bessellB', 'ab') return sn
def SNobj(fieldID, t0, snState=None): sn = SNObject(ra=np.degrees(so.ra(fieldID)), dec=np.degrees(so.dec(fieldID))) sn.set(t0=t0) sn.set(z=0.5) sn.set_source_peakabsmag(bessellBpeakabsmag, 'bessellB', 'ab') return sn
def setUp(self): """ Setup tests SN_blank: A SNObject with no MW extinction """ mydir = get_config_dir() print('===============================') print('===============================') print(mydir) print('===============================') print('===============================') # A range of wavelengths in Ang self.wave = np.arange(3000., 12000., 50.) # Equivalent wavelenths in nm self.wavenm = self.wave / 10. # Time to be used as Peak self.mjdobs = 571190 # Check that we can set up a SED # with no extinction self.SN_blank = SNObject() self.SN_blank.setCoords(ra=30., dec=-60.) self.SN_blank.set(z=0.96, t0=571181, x1=2.66, c=0.353, x0=1.796e-6) self.SN_blank.set_MWebv(0.) self.SN_extincted = SNObject(ra=30., dec=-60.) self.SN_extincted.set(z=0.96, t0=571181, x1=2.66, c=0.353, x0=1.796112e-06) self.SNCosmoModel = self.SN_extincted.equivalentSNCosmoModel() self.rectify_photParams = PhotometricParameters() self.lsstBandPass = BandpassDict.loadTotalBandpassesFromFiles() self.SNCosmoBP = sncosmo.Bandpass(wave=self.lsstBandPass['r'].wavelen, trans=self.lsstBandPass['r'].sb, wave_unit=astropy.units.Unit('nm'), name='lsst_r')
def setUp(self): """ Setup tests SN_blank: A SNObject with no MW extinction """ from astropy.config import get_config_dir mydir = get_config_dir() print '===============================' print '===============================' print (mydir) print '===============================' print '===============================' # A range of wavelengths in Ang self.wave = np.arange(3000., 12000., 50.) # Equivalent wavelenths in nm self.wavenm = self.wave / 10. # Time to be used as Peak self.mjdobs = 571190 # Check that we can set up a SED # with no extinction self.SN_blank = SNObject() self.SN_blank.setCoords(ra=30., dec=-60.) self.SN_blank.set(z=0.96, t0=571181, x1=2.66, c=0.353, x0=1.796e-6) self.SN_blank.set_MWebv(0.) self.SN_extincted = SNObject(ra=30., dec=-60.) self.SN_extincted.set(z=0.96, t0=571181, x1=2.66, c=0.353, x0=1.796112e-06) self.SNCosmoModel = self.SN_extincted.equivalentSNCosmoModel() self.lsstBandPass = BandpassDict.loadTotalBandpassesFromFiles() self.SNCosmoBP = sncosmo.Bandpass(wave=self.lsstBandPass['r'].wavelen, trans=self.lsstBandPass['r'].sb, wave_unit=astropy.units.Unit('nm'), name='lsst_r')
def get_snfluxes(self): c, x1, x0, t0, _z, ra, dec = self.column_by_name('c'),\ self.column_by_name('x1'),\ self.column_by_name('x0'),\ self.column_by_name('t0'),\ self.column_by_name('redshift'),\ self.column_by_name('raJ2000'),\ self.column_by_name('decJ2000') raDeg = np.degrees(ra) decDeg = np.degrees(dec) snobject = SNObject() # Initialize return array vals = np.zeros(shape=(self.numobjs, 19)) for i, _ in enumerate(vals): snobject.set(z=_z[i], c=c[i], x1=x1[i], t0=t0[i], x0=x0[i]) snobject.setCoords(ra=raDeg[i], dec=decDeg[i]) snobject.mwEBVfromMaps() # Calculate fluxes vals[i, :6] = snobject.catsimManyBandFluxes(time=self.mjdobs, bandpassDict=self.lsstBandpassDict, observedBandPassInd=None) # Calculate magnitudes vals[i, 6:12] = snobject.catsimManyBandMags(time=self.mjdobs, bandpassDict=self.lsstBandpassDict, observedBandPassInd=None) vals[i, 12:18] = snobject.catsimManyBandADUs(time=self.mjdobs, bandpassDict=self.lsstBandpassDict, photParams=self.photometricparameters) vals[i, 18] = snobject.ebvofMW return (vals[:, 0], vals[:, 1], vals[:, 2], vals[:, 3], vals[:, 4], vals[:, 5], vals[:, 6], vals[:, 7], vals[:, 8], vals[:, 9], vals[:, 10], vals[:, 11], vals[:, 12], vals[:, 13], vals[:, 14], vals[:, 15], vals[:, 16], vals[:, 17], vals[:, 18])
def SN(self): """ `lsst.sims.catsim.SNObject` instance with peakMJD set to t0 """ if self._SN is not None: pass # return self._SN elif self.snState is not None: self._SN = SNObject.fromSNState(self.snState) else: sn = SNObject(ra=self.radeg, dec=self.decdeg) sn.set(t0=self.t0) sn.set(z=0.5) sn.set_source_peakabsmag(self.peakAbsMagBesselB, 'bessellB', 'ab') self._SN = sn return self._SN
def get_phosimVars(self): """ Obtain variables sedFilepath to be used to obtain unique filenames for each SED for phoSim and MagNorm which is also used. Note that aside from acting as a getter, this also writes spectra to `self.sn_sedfile_prefix`snid_mjd_band.dat for each observation of interest """ # construct the unique filename # method: snid_mjd(to 4 places of decimal)_bandpassname mjd = "_{:0.4f}_".format(self.mjdobs) mjd += self.obs_metadata.bandpass + '.dat' fnames = np.array([self.sn_sedfile_prefix + str(int(elem)) + mjd if isinstance(elem, numbers.Number) else self.sn_sedfile_prefix + str(elem) + mjd for elem in self.column_by_name('snid')], dtype='str') c, x1, x0, t0, z = self.column_by_name('c'),\ self.column_by_name('x1'),\ self.column_by_name('x0'),\ self.column_by_name('t0'),\ self.column_by_name('redshift') bp = Bandpass() bp.imsimBandpass() magNorms = np.zeros(len(fnames)) snobject = SNObject() snobject.rectifySED = True for i in range(len(self.column_by_name('snid'))): # if t0 is nan, this was set by the catalog for dim SN, or SN # outside redshift range, We will not provide a SED file for these if np.isnan(t0[i]): magNorms[i] = np.nan fnames[i] = None else: snobject.set(c=c[i], x1=x1[i], x0=x0[i], t0=t0[i], z=z[i]) if snobject.modelOutSideTemporalRange == 'zero': if self.mjdobs > snobject.maxtime() or self.mjdobs < snobject.mintime(): magNorms[i] = np.nan fnames[i] = None # SED in rest frame sed = snobject.SNObjectSourceSED(time=self.mjdobs) try: magNorms[i] = sed.calcMag(bandpass=bp) except: # sed.flambda = 1.0e-20 magNorms[i] = 1000. # sed.calcMag(bandpass=bp) if self.writeSedFile: sed.writeSED(fnames[i]) return (fnames, magNorms)
def SN(self): """ `lsst.sims.catsim.SNObject` instance with peakMJD set to t0 """ if self._SN is not None: pass # return self._SN elif self.snState is not None: self._SN = SNObject.fromSNState(self.snState) else : sn = SNObject(ra=self.radeg, dec=self.decdeg) sn.set(t0=self.t0) sn.set(z=0.5) sn.set_source_peakabsmag(self.peakAbsMagBesselB, 'bessellB', 'ab') self._SN = sn return self._SN
def getSNCosmomags(mjd, filt, snpars_table, snid_in='MS_9940_3541'): asn = snpars_table.loc[snpars_table['snid_in'] == snid_in] sn_mod = SNObject(ra=asn.snra_in[0], dec=asn.sndec_in[0]) sn_mod.set(z=asn.z_in[0], t0=asn.t0_in[0], x1=asn.x1_in[0], c=asn.c_in[0], x0=asn.x0_in[0]) # this is probably not the thing to do flux = sn_mod.catsimBandFlux(mjd, LSST_BPass[filt]) mag = sn_mod.catsimBandMag(LSST_BPass[filt], mjd, flux) return (flux, mag)
def _calculate_batch_of_sn(self, sn_truth_params, mjd_arr, filter_arr, out_dict, tag): """ For processing SNe in batches using multiprocessing ----- sn_truth_params is a numpy array of json-ized dicts defining the state of an SNObject mjd_arr is a numpy array of the TAI times of observations filter_arr is a numpy array of ints indicating the filter being observed at each time out_dict is a multprocessing.Manager().dict() to store the results tag is an integer denoting which batch of SNe this is. """ int_to_filter = 'ugrizy' mags = np.NaN*np.ones((len(sn_truth_params), len(mjd_arr)), dtype=float) for i_obj, sn_par in enumerate(sn_truth_params): sn_obj = SNObject.fromSNState(json.loads(sn_par)) for i_time in range(len(mjd_arr)): mjd = mjd_arr[i_time] filter_name = int_to_filter[filter_arr[i_time]] if mjd < sn_obj.mintime() or mjd > sn_obj.maxtime(): continue bp = self._bp_dict[filter_name] sn_sed = sn_obj.SNObjectSED(mjd, bandpass=bp, applyExtinction=False) ff = sn_sed.calcFlux(bp) if ff>1.0e-300: mm = sn_sed.magFromFlux(ff) mags[i_obj][i_time] = mm out_dict[tag] = mags
def get_snbrightness(self): """ getters for brightness related parameters of sn """ if self._sn_object_cache is None or len(self._sn_object_cache) > 1000000: self._sn_object_cache = {} c, x1, x0, t0, _z, ra, dec = self.column_by_name('c'),\ self.column_by_name('x1'),\ self.column_by_name('x0'),\ self.column_by_name('t0'),\ self.column_by_name('redshift'),\ self.column_by_name('raJ2000'),\ self.column_by_name('decJ2000') raDeg = np.degrees(ra) decDeg = np.degrees(dec) ebv = self.column_by_name('EBV') id_list = self.column_by_name('snid') bandname = self.obs_metadata.bandpass if isinstance(bandname, list): raise ValueError('bandname expected to be string, but is list\n') bandpass = self.lsstBandpassDict[bandname] # Initialize return array so that it contains the values you would get # if you passed through a t0=self.badvalues supernova vals = np.array([[0.0]*len(t0), [np.inf]*len(t0), [np.nan]*len(t0), [np.inf]*len(t0), [0.0]*len(t0)]).transpose() for i in np.where(np.logical_and(np.isfinite(t0), np.abs(self.mjdobs - t0) < self.maxTimeSNVisible))[0]: if id_list[i] in self._sn_object_cache: SNobject = self._sn_object_cache[id_list[i]] else: SNobject = SNObject() SNobject.set(z=_z[i], c=c[i], x1=x1[i], t0=t0[i], x0=x0[i]) SNobject.setCoords(ra=raDeg[i], dec=decDeg[i]) SNobject.set_MWebv(ebv[i]) self._sn_object_cache[id_list[i]] = SNobject if self.mjdobs <= SNobject.maxtime() and self.mjdobs >= SNobject.mintime(): # Calculate fluxes fluxinMaggies = SNobject.catsimBandFlux(time=self.mjdobs, bandpassobject=bandpass) mag = SNobject.catsimBandMag(time=self.mjdobs, fluxinMaggies=fluxinMaggies, bandpassobject=bandpass) vals[i, 0] = fluxinMaggies vals[i, 1] = mag flux_err = SNobject.catsimBandFluxError(time=self.mjdobs, bandpassobject=bandpass, m5=self.obs_metadata.m5[ bandname], photParams=self.photometricparameters, fluxinMaggies=fluxinMaggies, magnitude=mag) mag_err = SNobject.catsimBandMagError(time=self.mjdobs, bandpassobject=bandpass, m5=self.obs_metadata.m5[ bandname], photParams=self.photometricparameters, magnitude=mag) sed = SNobject.SNObjectSED(time=self.mjdobs, bandpass=self.lsstBandpassDict, applyExtinction=True) adu = sed.calcADU(bandpass, photParams=self.photometricparameters) vals[i, 2] = flux_err vals[i, 3] = mag_err vals[i, 4] = adu return (vals[:, 0], vals[:, 1], vals[:, 2], vals[:, 3], vals[:, 4])
def __init__(self, catsim_cat, visit_mjd, specFileMap, sed_path, om10_cat='twinkles_lenses_v2.fits', sne_cat='dc2_sne_cat.csv', density_param=1., cached_sprinkling=False, agn_cache_file=None, sne_cache_file=None, defs_file=None): """ Parameters ---------- catsim_cat: catsim catalog The results array from an instance catalog. visit_mjd: float The mjd of the visit specFileMap: This will tell the instance catalog where to write the files om10_cat: optional, defaults to 'twinkles_lenses_v2.fits fits file with OM10 catalog sne_cat: optional, defaults to 'dc2_sne_cat.csv' density_param: `np.float`, optioanl, defaults to 1.0 the fraction of eligible agn objects that become lensed and should be between 0.0 and 1.0. cached_sprinkling: boolean If true then pick from a preselected list of galtileids agn_cache_file: str sne_cache_file: str defs_file: str Returns ------- updated_catalog: A new results array with lens systems added. """ twinklesDir = getPackageDir('Twinkles') om10_cat = os.path.join(twinklesDir, 'data', om10_cat) self.catalog = catsim_cat # ****** THIS ASSUMES THAT THE ENVIRONMENT VARIABLE OM10_DIR IS SET ******* lensdb = om10.DB(catalog=om10_cat, vb=False) self.lenscat = lensdb.lenses.copy() self.density_param = density_param self.bandpassDict = BandpassDict.loadTotalBandpassesFromFiles( bandpassNames=['i']) self.sne_catalog = pd.read_csv( os.path.join(twinklesDir, 'data', sne_cat)) #self.sne_catalog = self.sne_catalog.iloc[:101] ### Remove this after testing self.used_systems = [] self.visit_mjd = visit_mjd self.sn_obj = SNObject(0., 0.) self.write_dir = specFileMap.subdir_map['(^specFileGLSN)'] self.sed_path = sed_path self.cached_sprinkling = cached_sprinkling if self.cached_sprinkling is True: if ((agn_cache_file is None) | (sne_cache_file is None)): raise AttributeError( 'Must specify cache files if using cached_sprinkling.') #agn_cache_file = os.path.join(twinklesDir, 'data', 'test_agn_galtile_cache.csv') self.agn_cache = pd.read_csv(agn_cache_file) #sne_cache_file = os.path.join(twinklesDir, 'data', 'test_sne_galtile_cache.csv') self.sne_cache = pd.read_csv(sne_cache_file) else: self.agn_cache = None self.sne_cache = None if defs_file is None: self.defs_file = os.path.join(twinklesDir, 'data', 'catsim_defs.csv') else: self.defs_file = defs_file specFileStart = 'Burst' for key, val in sorted(iteritems(SpecMap.subdir_map)): if re.match(key, specFileStart): galSpecDir = str(val) self.galDir = str( getPackageDir('sims_sed_library') + '/' + galSpecDir + '/') self.imSimBand = Bandpass() self.imSimBand.imsimBandpass() #self.LRG_name = 'Burst.25E09.1Z.spec' #self.LRG = Sed() #self.LRG.readSED_flambda(str(galDir + self.LRG_name)) #return #Calculate imsimband magnitudes of source galaxies for matching agn_fname = str( getPackageDir('sims_sed_library') + '/agnSED/agn.spec.gz') src_iband = self.lenscat['MAGI_IN'] src_z = self.lenscat['ZSRC'] self.src_mag_norm = [] for src, s_z in zip(src_iband, src_z): agn_sed = Sed() agn_sed.readSED_flambda(agn_fname) agn_sed.redshiftSED(s_z, dimming=True) self.src_mag_norm.append(matchBase().calcMagNorm( [src], agn_sed, self.bandpassDict)) #self.src_mag_norm = matchBase().calcMagNorm(src_iband, # [agn_sed]*len(src_iband), # # self.bandpassDict) self.defs_dict = {} with open(self.defs_file, 'r') as f: for line in f: line_defs = line.split(',') if len(line_defs) > 1: self.defs_dict[line_defs[0]] = line_defs[1].split('\n')[0]
class sprinkler(): def __init__(self, catsim_cat, visit_mjd, specFileMap, sed_path, om10_cat='twinkles_lenses_v2.fits', sne_cat='dc2_sne_cat.csv', density_param=1., cached_sprinkling=False, agn_cache_file=None, sne_cache_file=None, defs_file=None): """ Parameters ---------- catsim_cat: catsim catalog The results array from an instance catalog. visit_mjd: float The mjd of the visit specFileMap: This will tell the instance catalog where to write the files om10_cat: optional, defaults to 'twinkles_lenses_v2.fits fits file with OM10 catalog sne_cat: optional, defaults to 'dc2_sne_cat.csv' density_param: `np.float`, optioanl, defaults to 1.0 the fraction of eligible agn objects that become lensed and should be between 0.0 and 1.0. cached_sprinkling: boolean If true then pick from a preselected list of galtileids agn_cache_file: str sne_cache_file: str defs_file: str Returns ------- updated_catalog: A new results array with lens systems added. """ twinklesDir = getPackageDir('Twinkles') om10_cat = os.path.join(twinklesDir, 'data', om10_cat) self.catalog = catsim_cat # ****** THIS ASSUMES THAT THE ENVIRONMENT VARIABLE OM10_DIR IS SET ******* lensdb = om10.DB(catalog=om10_cat, vb=False) self.lenscat = lensdb.lenses.copy() self.density_param = density_param self.bandpassDict = BandpassDict.loadTotalBandpassesFromFiles( bandpassNames=['i']) self.sne_catalog = pd.read_csv( os.path.join(twinklesDir, 'data', sne_cat)) #self.sne_catalog = self.sne_catalog.iloc[:101] ### Remove this after testing self.used_systems = [] self.visit_mjd = visit_mjd self.sn_obj = SNObject(0., 0.) self.write_dir = specFileMap.subdir_map['(^specFileGLSN)'] self.sed_path = sed_path self.cached_sprinkling = cached_sprinkling if self.cached_sprinkling is True: if ((agn_cache_file is None) | (sne_cache_file is None)): raise AttributeError( 'Must specify cache files if using cached_sprinkling.') #agn_cache_file = os.path.join(twinklesDir, 'data', 'test_agn_galtile_cache.csv') self.agn_cache = pd.read_csv(agn_cache_file) #sne_cache_file = os.path.join(twinklesDir, 'data', 'test_sne_galtile_cache.csv') self.sne_cache = pd.read_csv(sne_cache_file) else: self.agn_cache = None self.sne_cache = None if defs_file is None: self.defs_file = os.path.join(twinklesDir, 'data', 'catsim_defs.csv') else: self.defs_file = defs_file specFileStart = 'Burst' for key, val in sorted(iteritems(SpecMap.subdir_map)): if re.match(key, specFileStart): galSpecDir = str(val) self.galDir = str( getPackageDir('sims_sed_library') + '/' + galSpecDir + '/') self.imSimBand = Bandpass() self.imSimBand.imsimBandpass() #self.LRG_name = 'Burst.25E09.1Z.spec' #self.LRG = Sed() #self.LRG.readSED_flambda(str(galDir + self.LRG_name)) #return #Calculate imsimband magnitudes of source galaxies for matching agn_fname = str( getPackageDir('sims_sed_library') + '/agnSED/agn.spec.gz') src_iband = self.lenscat['MAGI_IN'] src_z = self.lenscat['ZSRC'] self.src_mag_norm = [] for src, s_z in zip(src_iband, src_z): agn_sed = Sed() agn_sed.readSED_flambda(agn_fname) agn_sed.redshiftSED(s_z, dimming=True) self.src_mag_norm.append(matchBase().calcMagNorm( [src], agn_sed, self.bandpassDict)) #self.src_mag_norm = matchBase().calcMagNorm(src_iband, # [agn_sed]*len(src_iband), # # self.bandpassDict) self.defs_dict = {} with open(self.defs_file, 'r') as f: for line in f: line_defs = line.split(',') if len(line_defs) > 1: self.defs_dict[line_defs[0]] = line_defs[1].split('\n')[0] def sprinkle(self): # Define a list that we can write out to a text file lenslines = [] # For each galaxy in the catsim catalog updated_catalog = self.catalog.copy() # print("Running sprinkler. Catalog Length: ", len(self.catalog)) for rowNum, row in enumerate(self.catalog): # if rowNum == 100 or rowNum % 100000==0: # print("Gone through ", rowNum, " lines of catalog.") if not np.isnan(row[self.defs_dict['galaxyAgn_magNorm']]): candidates = self.find_lens_candidates( row[self.defs_dict['galaxyAgn_redshift']], row[self.defs_dict['galaxyAgn_magNorm']]) #varString = json.loads(row[self.defs_dict['galaxyAgn_varParamStr']]) # varString[self.defs_dict['pars']]['t0_mjd'] = 59300.0 #row[self.defs_dict['galaxyAgn_varParamStr']] = json.dumps(varString) np.random.seed(row[self.defs_dict['galtileid']] % (2 ^ 32 - 1)) pick_value = np.random.uniform() # If there aren't any lensed sources at this redshift from OM10 move on the next object if (((len(candidates) > 0) and (pick_value <= self.density_param) and (self.cached_sprinkling is False)) | ((self.cached_sprinkling is True) and (row[self.defs_dict['galtileid']] in self.agn_cache['galtileid'].values))): # Randomly choose one the lens systems # (can decide with or without replacement) # Sort first to make sure the same choice is made every time if self.cached_sprinkling is True: twinkles_sys_cache = self.agn_cache.query( 'galtileid == %i' % row[self.defs_dict['galtileid']] )['twinkles_system'].values[0] newlens = self.lenscat[np.where( self.lenscat['twinklesId'] == twinkles_sys_cache) [0]][0] else: candidates = candidates[np.argsort( candidates['twinklesId'])] newlens = np.random.choice(candidates) # Append the lens galaxy # For each image, append the lens images for i in range(newlens['NIMG']): lensrow = row.copy() # XIMG and YIMG are in arcseconds # raPhSim and decPhoSim are in radians #Shift all parts of the lensed object, not just its agn part for lensPart in [ 'galaxyBulge', 'galaxyDisk', 'galaxyAgn' ]: lens_ra = lensrow[self.defs_dict[str(lensPart + '_raJ2000')]] lens_dec = lensrow[self.defs_dict[str( lensPart + '_decJ2000')]] delta_ra = np.radians( newlens['XIMG'][i] / 3600.0) / np.cos(lens_dec) delta_dec = np.radians(newlens['YIMG'][i] / 3600.0) lensrow[self.defs_dict[str( lensPart + '_raJ2000')]] = lens_ra + delta_ra lensrow[self.defs_dict[ str(lensPart + '_decJ2000')]] = lens_dec + delta_dec mag_adjust = 2.5 * np.log10(np.abs(newlens['MAG'][i])) lensrow[ self.defs_dict['galaxyAgn_magNorm']] -= mag_adjust varString = json.loads( lensrow[self.defs_dict['galaxyAgn_varParamStr']]) varString[self.defs_dict['pars']]['t0Delay'] = newlens[ 'DELAY'][i] varString[self.defs_dict[ 'varMethodName']] = 'applyAgnTimeDelay' lensrow[self.defs_dict[ 'galaxyAgn_varParamStr']] = json.dumps(varString) lensrow[self.defs_dict['galaxyDisk_majorAxis']] = 0.0 lensrow[self.defs_dict['galaxyDisk_minorAxis']] = 0.0 lensrow[ self.defs_dict['galaxyDisk_positionAngle']] = 0.0 lensrow[self.defs_dict['galaxyDisk_internalAv']] = 0.0 lensrow[self.defs_dict[ 'galaxyDisk_magNorm']] = 999. #np.nan To be fixed post run1.1 lensrow[ self.defs_dict['galaxyDisk_sedFilename']] = None lensrow[self.defs_dict['galaxyBulge_majorAxis']] = 0.0 lensrow[self.defs_dict['galaxyBulge_minorAxis']] = 0.0 lensrow[ self.defs_dict['galaxyBulge_positionAngle']] = 0.0 lensrow[self.defs_dict['galaxyBulge_internalAv']] = 0.0 lensrow[self.defs_dict[ 'galaxyBulge_magNorm']] = 999. #np.nan To be fixed post run1.1 lensrow[ self.defs_dict['galaxyBulge_sedFilename']] = None lensrow[self.defs_dict[ 'galaxyBulge_redshift']] = newlens['ZSRC'] lensrow[self.defs_dict[ 'galaxyDisk_redshift']] = newlens['ZSRC'] lensrow[self.defs_dict[ 'galaxyAgn_redshift']] = newlens['ZSRC'] #To get back twinklesID in lens catalog from phosim catalog id number #just use np.right_shift(phosimID-28, 10). Take the floor of the last #3 numbers to get twinklesID in the twinkles lens catalog and the remainder is #the image number minus 1. lensrow[self.defs_dict['galtileid']] = ( lensrow[self.defs_dict['galtileid']] * 10000 + newlens['twinklesId'] * 4 + i) updated_catalog = np.append(updated_catalog, lensrow) #Now manipulate original entry to be the lens galaxy with desired properties #Start by deleting Disk and AGN properties if not np.isnan(row[self.defs_dict['galaxyDisk_magNorm']]): row[self.defs_dict['galaxyDisk_majorAxis']] = 0.0 row[self.defs_dict['galaxyDisk_minorAxis']] = 0.0 row[self.defs_dict['galaxyDisk_positionAngle']] = 0.0 row[self.defs_dict['galaxyDisk_internalAv']] = 0.0 row[self.defs_dict[ 'galaxyDisk_magNorm']] = 999. #np.nan To be fixed post run1.1 row[self.defs_dict['galaxyDisk_sedFilename']] = None row[self.defs_dict[ 'galaxyAgn_magNorm']] = None #np.nan To be fixed post run1.1 row[self.defs_dict[ 'galaxyDisk_magNorm']] = 999. # To be fixed in run1.1 row[self.defs_dict['galaxyAgn_sedFilename']] = None #Now insert desired Bulge properties row[self.defs_dict['galaxyBulge_sedFilename']] = newlens[ 'lens_sed'] row[self. defs_dict['galaxyBulge_redshift']] = newlens['ZLENS'] row[self. defs_dict['galaxyDisk_redshift']] = newlens['ZLENS'] row[self. defs_dict['galaxyAgn_redshift']] = newlens['ZLENS'] row_lens_sed = Sed() row_lens_sed.readSED_flambda( str(self.galDir + newlens['lens_sed'])) row_lens_sed.redshiftSED(newlens['ZLENS'], dimming=True) row[self.defs_dict['galaxyBulge_magNorm']] = matchBase( ).calcMagNorm( [newlens['APMAG_I']], row_lens_sed, self.bandpassDict) #Changed from i band to imsimband row[self.defs_dict[ 'galaxyBulge_majorAxis']] = radiansFromArcsec( newlens['REFF'] / np.sqrt(1 - newlens['ELLIP'])) row[self.defs_dict[ 'galaxyBulge_minorAxis']] = radiansFromArcsec( newlens['REFF'] * np.sqrt(1 - newlens['ELLIP'])) #Convert orientation angle to west of north from east of north by *-1.0 and convert to radians row[self.defs_dict['galaxyBulge_positionAngle']] = newlens[ 'PHIE'] * (-1.0) * np.pi / 180.0 #Replace original entry with new entry updated_catalog[rowNum] = row else: if self.cached_sprinkling is True: if row[self.defs_dict['galtileid']] in self.sne_cache[ 'galtileid'].values: use_system = self.sne_cache.query( 'galtileid == %i' % row[self.defs_dict['galtileid']] )['twinkles_system'].values use_df = self.sne_catalog.query( 'twinkles_sysno == %i' % use_system) self.used_systems.append(use_system) else: continue else: lens_sne_candidates = self.find_sne_lens_candidates( row[self.defs_dict['galaxyDisk_redshift']]) candidate_sysno = np.unique( lens_sne_candidates['twinkles_sysno']) num_candidates = len(candidate_sysno) if num_candidates == 0: continue used_already = np.array([ sys_num in self.used_systems for sys_num in candidate_sysno ]) unused_sysno = candidate_sysno[~used_already] if len(unused_sysno) == 0: continue np.random.seed(row[self.defs_dict['galtileid']] % (2 ^ 32 - 1)) use_system = np.random.choice(unused_sysno) use_df = self.sne_catalog.query('twinkles_sysno == %i' % use_system) for i in range(len(use_df)): lensrow = row.copy() for lensPart in ['galaxyBulge', 'galaxyDisk', 'galaxyAgn']: lens_ra = lensrow[self.defs_dict[str(lensPart + '_raJ2000')]] lens_dec = lensrow[self.defs_dict[str(lensPart + '_decJ2000')]] delta_ra = np.radians( use_df['x'].iloc[i] / 3600.0) / np.cos(lens_dec) delta_dec = np.radians(use_df['y'].iloc[i] / 3600.0) lensrow[self.defs_dict[str( lensPart + '_raJ2000')]] = lens_ra + delta_ra lensrow[self.defs_dict[str( lensPart + '_decJ2000')]] = lens_dec + delta_dec # varString = json.loads(lensrow[self.defs_dict['galaxyAgn_varParamStr']]) varString = 'None' lensrow[ self.defs_dict['galaxyAgn_varParamStr']] = varString lensrow[self.defs_dict['galaxyDisk_majorAxis']] = 0.0 lensrow[self.defs_dict['galaxyDisk_minorAxis']] = 0.0 lensrow[self.defs_dict['galaxyDisk_positionAngle']] = 0.0 lensrow[self.defs_dict['galaxyDisk_internalAv']] = 0.0 lensrow[self.defs_dict[ 'galaxyDisk_magNorm']] = 999. #np.nan To be fixed post run1.1 lensrow[self.defs_dict['galaxyDisk_sedFilename']] = None lensrow[self.defs_dict['galaxyBulge_majorAxis']] = 0.0 lensrow[self.defs_dict['galaxyBulge_minorAxis']] = 0.0 lensrow[self.defs_dict['galaxyBulge_positionAngle']] = 0.0 lensrow[self.defs_dict['galaxyBulge_internalAv']] = 0.0 lensrow[self.defs_dict[ 'galaxyBulge_magNorm']] = 999. #np.nan To be fixed post run1.1 lensrow[self.defs_dict['galaxyBulge_sedFilename']] = None z_s = use_df['zs'].iloc[i] lensrow[self.defs_dict['galaxyBulge_redshift']] = z_s lensrow[self.defs_dict['galaxyDisk_redshift']] = z_s lensrow[self.defs_dict['galaxyAgn_redshift']] = z_s #To get back twinklesID in lens catalog from phosim catalog id number #just use np.right_shift(phosimID-28, 10). Take the floor of the last #3 numbers to get twinklesID in the twinkles lens catalog and the remainder is #the image number minus 1. lensrow[self.defs_dict['galtileid']] = ( lensrow[self.defs_dict['galtileid']] * 10000 + use_system * 4 + i) add_to_cat, sn_magnorm, sn_fname = self.create_sn_sed( use_df.iloc[i], lensrow[self.defs_dict['galaxyAgn_raJ2000']], lensrow[self.defs_dict['galaxyAgn_decJ2000']], self.visit_mjd) lensrow[self.defs_dict['galaxyAgn_sedFilename']] = sn_fname lensrow[self.defs_dict[ 'galaxyAgn_magNorm']] = sn_magnorm #This will need to be adjusted to proper band mag_adjust = 2.5 * np.log10(np.abs(use_df['mu'].iloc[i])) lensrow[self.defs_dict['galaxyAgn_magNorm']] -= mag_adjust if add_to_cat is True: updated_catalog = np.append(updated_catalog, lensrow) else: continue #Now manipulate original entry to be the lens galaxy with desired properties #Start by deleting Disk and AGN properties if not np.isnan(row[self.defs_dict['galaxyDisk_magNorm']]): row[self.defs_dict['galaxyDisk_majorAxis']] = 0.0 row[self.defs_dict['galaxyDisk_minorAxis']] = 0.0 row[self.defs_dict['galaxyDisk_positionAngle']] = 0.0 row[self.defs_dict['galaxyDisk_internalAv']] = 0.0 row[self.defs_dict[ 'galaxyDisk_magNorm']] = 999. #np.nan To be fixed post run1.1 row[self.defs_dict['galaxyDisk_sedFilename']] = None row[self.defs_dict[ 'galaxyAgn_magNorm']] = None #np.nan To be fixed post run1.1 row[self.defs_dict[ 'galaxyDisk_magNorm']] = 999. #To be fixed post run1.1 row[self.defs_dict['galaxyAgn_sedFilename']] = None #Now insert desired Bulge properties row[self.defs_dict['galaxyBulge_sedFilename']] = use_df[ 'lens_sed'].iloc[0] row[self. defs_dict['galaxyBulge_redshift']] = use_df['zl'].iloc[0] row[self. defs_dict['galaxyDisk_redshift']] = use_df['zl'].iloc[0] row[self. defs_dict['galaxyAgn_redshift']] = use_df['zl'].iloc[0] row[self.defs_dict['galaxyBulge_magNorm']] = use_df[ 'bulge_magnorm'].iloc[0] # row[self.defs_dict['galaxyBulge_magNorm']] = matchBase().calcMagNorm([newlens['APMAG_I']], self.LRG, self.bandpassDict) #Changed from i band to imsimband row[self. defs_dict['galaxyBulge_majorAxis']] = radiansFromArcsec( use_df['r_eff'].iloc[0] / np.sqrt(1 - use_df['e'].iloc[0])) row[self. defs_dict['galaxyBulge_minorAxis']] = radiansFromArcsec( use_df['r_eff'].iloc[0] * np.sqrt(1 - use_df['e'].iloc[0])) #Convert orientation angle to west of north from east of north by *-1.0 and convert to radians row[self.defs_dict['galaxyBulge_positionAngle']] = use_df[ 'theta_e'].iloc[0] * (-1.0) * np.pi / 180.0 #Replace original entry with new entry updated_catalog[rowNum] = row return updated_catalog def find_lens_candidates(self, galz, gal_mag): # search the OM10 catalog for all sources +- 0.1 dex in redshift # and within .25 mags of the CATSIM source w = np.where( (np.abs(np.log10(self.lenscat['ZSRC']) - np.log10(galz)) <= 0.1) & (np.abs(self.src_mag_norm - gal_mag) <= .25))[0] lens_candidates = self.lenscat[w] return lens_candidates def find_sne_lens_candidates(self, galz): w = np.where( (np.abs(np.log10(self.sne_catalog['zs']) - np.log10(galz)) <= 0.1)) lens_candidates = self.sne_catalog.iloc[w] return lens_candidates def create_sn_sed(self, system_df, sn_ra, sn_dec, sed_mjd): sn_param_dict = copy.deepcopy(self.sn_obj.SNstate) sn_param_dict['_ra'] = sn_ra sn_param_dict['_dec'] = sn_dec sn_param_dict['z'] = system_df['zs'] sn_param_dict['c'] = system_df['c'] sn_param_dict['x0'] = system_df['x0'] sn_param_dict['x1'] = system_df['x1'] sn_param_dict['t0'] = system_df['t_start'] # sn_param_dict['t0'] = 61681.083859 #+1500. ### For testing only current_sn_obj = self.sn_obj.fromSNState(sn_param_dict) current_sn_obj.mwEBVfromMaps() wavelen_max = 1800. wavelen_min = 30. wavelen_step = 0.1 sn_sed_obj = current_sn_obj.SNObjectSED(time=sed_mjd, wavelen=np.arange( wavelen_min, wavelen_max, wavelen_step)) flux_500 = sn_sed_obj.flambda[np.where( sn_sed_obj.wavelen >= 499.99)][0] if flux_500 > 0.: add_to_cat = True sn_magnorm = current_sn_obj.catsimBandMag(self.imSimBand, sed_mjd) sn_name = 'specFileGLSN_%i_%i_%.4f.txt' % ( system_df['twinkles_sysno'], system_df['imno'], sed_mjd) sed_filename = '%s/%s' % (self.sed_path, sn_name) sn_sed_obj.writeSED(sed_filename) with open(sed_filename, 'rb') as f_in, gzip.open(str(sed_filename + '.gz'), 'wb') as f_out: shutil.copyfileobj(f_in, f_out) os.remove(sed_filename) else: add_to_cat = False sn_magnorm = np.nan sn_name = None return add_to_cat, sn_magnorm, sn_name def update_catsim(self): # Remove the catsim object # Add lensed images to the catsim given source brightness and magnifications # Add lens galaxy to catsim return def catsim_to_phosim(self): # Pass this catsim to phosim to make images return
def main(ramax=58, ramin=56, decmin=-32, decmax=-31, t0=59215, tm=61406): query = query_tmpl.format(ramin, ramax, decmin, decmax) sntab = pd.read_sql_query(query, conn) #sntab.to_csv('./catalogs+tables/sn_cat_rectangle.csv') #if os.path.isfile('./catalogs+tables/full_t_visits_from_minion.csv'): # visitab = pd.read_csv('./catalogs+tables/full_t_visits_from_minion.csv') #else: res = ObsMetaData.getObservationMetaData(boundLength=2, boundType='circle', fieldRA=(ramin - 3, ramax + 3), fieldDec=(decmin - 3, decmax + 3), expMJD=(t0, tm)) parsed = [Odict(obsmd.summary['OpsimMetaData']) for obsmd in res] for obsmd, summ in zip(res, parsed): ditherRa = np.rad2deg(summ['descDitheredRA']) ditherDec = np.rad2deg(summ['descDitheredDec']) ditherRot = np.rad2deg(summ['descDitheredRotTelPos']) summ['descDitheredRotSkyPos'] = getRotSkyPos(ditherRa, ditherDec, obsmd, ditherRot) df = pd.DataFrame(parsed) df = df[df['filter'].isin(('g', 'r', 'i', 'z'))] X = df[[ 'obsHistID', 'filter', 'FWHMeff', 'descDitheredRA', 'descDitheredDec', 'descDitheredRotTelPos', 'airmass', 'fiveSigmaDepth', 'expMJD', 'descDitheredRotSkyPos', 'fieldRA', 'fieldDec', 'rotSkyPos', 'rotTelPos' ]].copy() X.descDitheredRA = np.rad2deg(X.descDitheredRA) X.descDitheredDec = np.rad2deg(X.descDitheredDec) X.descDitheredRotTelPos = np.rad2deg(X.descDitheredRotTelPos) #X.descDitheredRotSkyPos = np.rad2deg(X.descDitheredRotSkyPos) already in deg X.fieldRA = np.rad2deg(X.fieldRA) X.fieldDec = np.rad2deg(X.fieldDec) X.rotTelPos = np.rad2deg(X.rotTelPos) X.rotSkyPos = np.rad2deg(X.rotSkyPos) X['d1'] = angularSeparation(ramin, decmax, X.descDitheredRA.values, X.descDitheredDec.values) X['d2'] = angularSeparation(ramin, decmin, X.descDitheredRA.values, X.descDitheredDec.values) X['d3'] = angularSeparation(ramax, decmax, X.descDitheredRA.values, X.descDitheredDec.values) X['d4'] = angularSeparation(ramax, decmin, X.descDitheredRA.values, X.descDitheredDec.values) visitab = X.query('d1 < 1.75 | d2 < 1.75 | d3 < 1.75 |d4 < 1.75') del (X) del (df) visitab.to_csv('./catalogs+tables/full_t_visits_from_minion.csv') # setting the observation telescope status boresight = [] orientation = [] wcs_list = [] for avisit in visitab.itertuples(): bsight = geom.SpherePoint(avisit.descDitheredRA * geom.degrees, avisit.descDitheredDec * geom.degrees) orient = (90 - avisit.descDitheredRotSkyPos) * geom.degrees wcs_list.append([ makeSkyWcs(t, orient, flipX=False, boresight=bsight, projection='TAN') for t in trans ]) orientation.append(orient) boresight.append(bsight) times = visitab['expMJD'] bands = visitab['filter'] depths = visitab['fiveSigmaDepth'] #colnames = ['mjd', 'filter'] data_cols = {'mjd': times, 'filter': bands, 'visitn': visitab['obsHistID']} n_observ = [] n_trueobserv = [] for asn in sntab.itertuples(): sn_mod = SNObject(ra=asn.snra_in, dec=asn.sndec_in) sn_mod.set(z=asn.z_in, t0=asn.t0_in, x1=asn.x1_in, c=asn.c_in, x0=asn.x0_in) sn_skyp = afwGeom.SpherePoint(asn.snra_in, asn.sndec_in, afwGeom.degrees) size = len(times) sn_flxs = np.zeros(size) sn_mags = np.zeros(size) sn_flxe = np.zeros(size) sn_mage = np.zeros(size) sn_obsrvd = [] sn_observable = [] ii = 0 for mjd, filt, wcsl, m5 in zip(times, bands, wcs_list, depths): flux = sn_mod.catsimBandFlux(mjd, LSST_BPass[filt]) mag = sn_mod.catsimBandMag(LSST_BPass[filt], mjd, flux) flux_er = sn_mod.catsimBandFluxError(mjd, LSST_BPass[filt], m5, flux) mag_er = sn_mod.catsimBandMagError(mjd, LSST_BPass[filt], m5, magnitude=mag) # checking sensors containing this object contain = [box.contains(afwGeom.Point2I(wcs.skyToPixel(sn_skyp))) \ for box, wcs in zip(boxes, wcsl)] observed = np.sum(contain) > 0 observable = observed & (flux > 0.0 ) #(mag + mag_er < 27.0) & (mag_er < 0.5) # if observed: # print('Overlaps ccd', names[np.where(contain)[0][0]]) sn_observable.append(observable) sn_obsrvd.append(observed) sn_flxs[ii] = flux # done sn_mags[ii] = mag sn_flxe[ii] = flux_er sn_mage[ii] = mag_er ii += 1 data_cols[asn.snid_in + '_observable'] = sn_observable data_cols[asn.snid_in + '_observed'] = sn_obsrvd data_cols[asn.snid_in + '_flux'] = sn_flxs data_cols[asn.snid_in + '_fluxErr'] = sn_flxe data_cols[asn.snid_in + '_mag'] = sn_mags data_cols[asn.snid_in + '_magErr'] = sn_mage n_observ.append(np.sum(sn_obsrvd)) n_trueobserv.append(np.sum(sn_observable)) sntab['Nobserv'] = n_observ sntab['N_trueobserv'] = n_trueobserv lightcurves = pd.DataFrame(data_cols) dest_lc = './lightcurves/lightcurves_cat_rect_{}_{}_{}_{}.csv' lightcurves.to_csv(dest_lc.format(ramax, ramin, decmax, decmin)) dest_snfile = './catalogs+tables/supernovae_cat_rect_{}_{}_{}_{}.csv' sntab.to_csv(dest_snfile.format(ramax, ramin, decmax, decmin)) print("""Stored the lightcurves in {}, the SN catalog in {}""".format( dest_lc.format(ramax, ramin, decmax, decmin), dest_snfile.format(ramax, ramin, decmax, decmin))) return
class SNObject_tests(unittest.TestCase): def setUp(self): """ Setup tests SN_blank: A SNObject with no MW extinction """ from astropy.config import get_config_dir mydir = get_config_dir() print '===============================' print '===============================' print (mydir) print '===============================' print '===============================' # A range of wavelengths in Ang self.wave = np.arange(3000., 12000., 50.) # Equivalent wavelenths in nm self.wavenm = self.wave / 10. # Time to be used as Peak self.mjdobs = 571190 # Check that we can set up a SED # with no extinction self.SN_blank = SNObject() self.SN_blank.setCoords(ra=30., dec=-60.) self.SN_blank.set(z=0.96, t0=571181, x1=2.66, c=0.353, x0=1.796e-6) self.SN_blank.set_MWebv(0.) self.SN_extincted = SNObject(ra=30., dec=-60.) self.SN_extincted.set(z=0.96, t0=571181, x1=2.66, c=0.353, x0=1.796112e-06) self.SNCosmoModel = self.SN_extincted.equivalentSNCosmoModel() self.lsstBandPass = BandpassDict.loadTotalBandpassesFromFiles() self.SNCosmoBP = sncosmo.Bandpass(wave=self.lsstBandPass['r'].wavelen, trans=self.lsstBandPass['r'].sb, wave_unit=astropy.units.Unit('nm'), name='lsst_r') def tearDown(self): pass def test_SNstatenotEmpty(self): """ Check that the state of SNObject, stored in self.SNstate has valid entries for all keys and does not contain keys with None type Values. """ myDict = self.SN_extincted.SNstate for key in myDict.keys(): assert myDict[key] is not None def test_ComparebandFluxes2photUtils(self): """ The SNObject.catsimBandFlux computation uses the sims.photUtils.sed band flux computation under the hood. This test makes sure that these definitions are in sync """ snobject_r = self.SN_extincted.catsimBandFlux( bandpassobject=self.lsstBandPass['r'], time=self.mjdobs) # `sims.photUtils.Sed` sed = self.SN_extincted.SNObjectSED(time=self.mjdobs, bandpass=self.lsstBandPass['r']) sedflux = sed.calcFlux(bandpass=self.lsstBandPass['r']) np.testing.assert_allclose(snobject_r, sedflux / 3631.0) def test_CompareBandFluxes2SNCosmo(self): """ Compare the r band flux at a particular time computed in SNObject and SNCosmo for MW-extincted SEDs. While the underlying sed is obtained from SNCosmo the integration with the bandpass is an independent calculation in SNCosmo and catsim """ times = self.mjdobs catsim_r = self.SN_extincted.catsimBandFlux( bandpassobject=self.lsstBandPass['r'], time=times) sncosmo_r = self.SNCosmoModel.bandflux(band=self.SNCosmoBP, time=times, zpsys='ab', zp=0.) np.testing.assert_allclose(sncosmo_r, catsim_r) def test_CompareBandMags2SNCosmo(self): """ Compare the r band flux at a particular time computed in SNObject and SNCosmo for MW-extincted SEDs. Should work whenever the flux comparison above works. """ times = self.mjdobs catsim_r = self.SN_extincted.catsimBandMag( bandpassobject=self.lsstBandPass['r'], time=times) sncosmo_r = self.SNCosmoModel.bandmag(band=self.SNCosmoBP, time=times, magsys='ab') np.testing.assert_allclose(sncosmo_r, catsim_r) def test_CompareExtinctedSED2SNCosmo(self): """ Compare the extincted SEDS in SNCosmo and SNObject. Slightly more non-trivial than comparing unextincted SEDS, as the extinction in SNObject uses different code from SNCosmo. However, this is still using the same values of MWEBV, rather than reading it off a map. """ SNObjectSED = self.SN_extincted.SNObjectSED(time=self.mjdobs, wavelen=self.wavenm) SNCosmoSED = self.SNCosmoModel.flux(time=self.mjdobs, wave=self.wave) \ * 10. np.testing.assert_allclose(SNObjectSED.flambda, SNCosmoSED, rtol=1.0e-7) def test_CompareUnextinctedSED2SNCosmo(self): """ Compares the unextincted flux Densities in SNCosmo and SNObject. This is mereley a sanity check as SNObject uses SNCosmo under the hood. """ SNCosmoFluxDensity = self.SN_blank.flux(wave=self.wave, time=self.mjdobs) * 10. unextincted_sed = self.SN_blank.SNObjectSED(time=self.mjdobs, wavelen=self.wavenm) SNObjectFluxDensity = unextincted_sed.flambda np.testing.assert_allclose(SNCosmoFluxDensity, SNObjectFluxDensity, rtol=1.0e-7)
def get_snbrightness(self): """ getters for brightness related parameters of sn """ if self._sn_object_cache is None or len( self._sn_object_cache) > 1000000: self._sn_object_cache = {} c, x1, x0, t0, _z, ra, dec = self.column_by_name('c'),\ self.column_by_name('x1'),\ self.column_by_name('x0'),\ self.column_by_name('t0'),\ self.column_by_name('redshift'),\ self.column_by_name('raJ2000'),\ self.column_by_name('decJ2000') raDeg = np.degrees(ra) decDeg = np.degrees(dec) ebv = self.column_by_name('EBV') id_list = self.column_by_name('snid') bandname = self.obs_metadata.bandpass if isinstance(bandname, list): raise ValueError('bandname expected to be string, but is list\n') bandpass = self.lsstBandpassDict[bandname] # Initialize return array so that it contains the values you would get # if you passed through a t0=self.badvalues supernova vals = np.array([[0.0] * len(t0), [np.inf] * len(t0), [np.nan] * len(t0), [np.inf] * len(t0), [0.0] * len(t0)]).transpose() for i in np.where( np.logical_and( np.isfinite(t0), np.abs(self.mjdobs - t0) < self.maxTimeSNVisible))[0]: if id_list[i] in self._sn_object_cache: SNobject = self._sn_object_cache[id_list[i]] else: SNobject = SNObject() SNobject.set(z=_z[i], c=c[i], x1=x1[i], t0=t0[i], x0=x0[i]) SNobject.setCoords(ra=raDeg[i], dec=decDeg[i]) SNobject.set_MWebv(ebv[i]) self._sn_object_cache[id_list[i]] = SNobject if self.mjdobs <= SNobject.maxtime( ) and self.mjdobs >= SNobject.mintime(): # Calculate fluxes fluxinMaggies = SNobject.catsimBandFlux( time=self.mjdobs, bandpassobject=bandpass) mag = SNobject.catsimBandMag(time=self.mjdobs, fluxinMaggies=fluxinMaggies, bandpassobject=bandpass) vals[i, 0] = fluxinMaggies vals[i, 1] = mag flux_err = SNobject.catsimBandFluxError( time=self.mjdobs, bandpassobject=bandpass, m5=self.obs_metadata.m5[bandname], photParams=self.photometricparameters, fluxinMaggies=fluxinMaggies, magnitude=mag) mag_err = SNobject.catsimBandMagError( time=self.mjdobs, bandpassobject=bandpass, m5=self.obs_metadata.m5[bandname], photParams=self.photometricparameters, magnitude=mag) sed = SNobject.SNObjectSED(time=self.mjdobs, bandpass=self.lsstBandpassDict, applyExtinction=True) adu = sed.calcADU(bandpass, photParams=self.photometricparameters) vals[i, 2] = flux_err vals[i, 3] = mag_err vals[i, 4] = adu return (vals[:, 0], vals[:, 1], vals[:, 2], vals[:, 3], vals[:, 4])
def get_snfluxes(self): c, x1, x0, t0, _z, ra, dec = self.column_by_name('c'),\ self.column_by_name('x1'),\ self.column_by_name('x0'),\ self.column_by_name('t0'),\ self.column_by_name('redshift'),\ self.column_by_name('raJ2000'),\ self.column_by_name('decJ2000') raDeg = np.degrees(ra) decDeg = np.degrees(dec) snobject = SNObject() # Initialize return array vals = np.zeros(shape=(self.numobjs, 19)) for i, _ in enumerate(vals): snobject.set(z=_z[i], c=c[i], x1=x1[i], t0=t0[i], x0=x0[i]) snobject.setCoords(ra=raDeg[i], dec=decDeg[i]) snobject.mwEBVfromMaps() # Calculate fluxes vals[i, :6] = snobject.catsimManyBandFluxes( time=self.mjdobs, bandpassDict=self.lsstBandpassDict, observedBandPassInd=None) # Calculate magnitudes vals[i, 6:12] = snobject.catsimManyBandMags( time=self.mjdobs, bandpassDict=self.lsstBandpassDict, observedBandPassInd=None) vals[i, 12:18] = snobject.catsimManyBandADUs( time=self.mjdobs, bandpassDict=self.lsstBandpassDict, photParams=self.photometricparameters) vals[i, 18] = snobject.ebvofMW return (vals[:, 0], vals[:, 1], vals[:, 2], vals[:, 3], vals[:, 4], vals[:, 5], vals[:, 6], vals[:, 7], vals[:, 8], vals[:, 9], vals[:, 10], vals[:, 11], vals[:, 12], vals[:, 13], vals[:, 14], vals[:, 15], vals[:, 16], vals[:, 17], vals[:, 18])
class SNSynthPhotFactory: """ Factory class to return the SyntheticPhotometry objects for a SN Ia as a function of time. This uses the 'salt2-extended' model in sncosmo as implemented in sims_catUtils. """ lsst_bp_dict = BandpassDict.loadTotalBandpassesFromFiles() def __init__(self, z=0, t0=0, x0=1, x1=0, c=0, snra=0, sndec=0): """ Parameters ---------- z: float [0] Redshift of the SNIa object to pass to sncosmo. t0: float [0] Time in mjd of phase=0, corresponding to the B-band maximum. x0: float [1] Normalization factor for the lightcurves. x1: float [0] Empirical parameter controlling the stretch in time of the light curves c: float [0] Empirical parameter controlling the colors. snra: float [0] RA in degrees of the SNIa. sndec: float [0] Dec in degrees of the SNIa. """ self.sn_obj = SNObject(snra, sndec) self.sn_obj.set(z=z, t0=t0, x0=x0, x1=x1, c=c, hostebv=0, hostr_v=3.1, mwebv=0, mwr_v=3.1) self.bp_dict = self.lsst_bp_dict def set_bp_dict(self, bp_dict): """ Set the bandpass dictionary. Parameters ---------- bp_dict: lsst.sims.photUtils.BandpassDict Dictionary containing the bandpasses. If None, the standard LSST total bandpasses will be used. """ self.bp_dict = bp_dict def create(self, mjd): """ Return a SyntheticPhotometry object for the specified time in MJD. Parameters ---------- mjd: float Observation time in MJD. Returns ------- desc.sims_truthcatalog.SyntheticPhotometry """ # Create the Sed object. Milky Way extinction will be # below, so set applyExtinction=False. sed = self.sn_obj.SNObjectSED(mjd, bandpass=self.bp_dict, applyExtinction=False) # The redshift was applied to the model SED computed by # sncosmo in the __init__ function, so set redshift=0 here. synth_phot = SyntheticPhotometry.create_from_sed(sed, redshift=0) synth_phot.add_MW_dust(*np.degrees(self.sn_obj.skycoord).flatten()) return synth_phot def __getattr__(self, attr): # Pass any attribute access requests to the SNObject instance. return getattr(self.sn_obj, attr)
def validate_sne(cat_dir, obsid, fov_deg=2.1, scatter_file=None, vanishing_file=None): """ Parameters ---------- cat_dir is the parent dir of $obsid obsid is the obsHistID of the pointing (an int) fov_deg is the radius of the field of view in degrees """ project_dir = os.path.join('/global/projecta/projectdirs', 'lsst/groups/SSim/DC2/cosmoDC2_v1.1.4') sne_db_name = os.path.join(project_dir, 'sne_cosmoDC2_v1.1.4_MS_DDF.db') if not os.path.isfile(sne_db_name): raise RuntimeError("\n%s\nis not a file" % sne_db_name) instcat_dir = os.path.join(cat_dir, '%.8d' % obsid) if not os.path.isdir(instcat_dir): raise RuntimeError("\n%s\nis not a dir" % instcat_dir) sne_name = os.path.join(instcat_dir, 'sne_cat_%d.txt.gz' % obsid) if not os.path.isfile(sne_name): raise RuntimeError("\n%s\nis not a file" % sne_name) phosim_name = os.path.join(instcat_dir, 'phosim_cat_%d.txt' % obsid) if not os.path.isfile(phosim_name): raise RuntimeError("\n%s\nis not a file" % phosim_name) sed_dir = os.path.join(instcat_dir, "Dynamic") if not os.path.isdir(sed_dir): raise RuntimeError("\n%s\nis not a dir" % sed_dir) opsim_db = os.path.join("/global/projecta/projectdirs", "lsst/groups/SSim/DC2", "minion_1016_desc_dithered_v4_sfd.db") if not os.path.isfile(opsim_db): raise RuntimeError("\n%s\nis not a file" % opsim_db) band_from_int = 'ugrizy' bandpass = None with open(phosim_name, 'r') as in_file: for line in in_file: params = line.strip().split() if params[0] == 'filter': bandpass = band_from_int[int(params[1])] break if bandpass is None: raise RuntimeError("Failed to read in bandpass") bp_dict = photUtils.BandpassDict.loadTotalBandpassesFromFiles() with sqlite3.connect(opsim_db) as conn: c = conn.cursor() r = c.execute("SELECT descDitheredRA, descDitheredDec, expMJD FROM Summary " "WHERE obsHistID==%d" % obsid).fetchall() pointing_ra = np.degrees(r[0][0]) pointing_dec = np.degrees(r[0][1]) expmjd = float(r[0][2]) with sqlite3.connect(sne_db_name) as conn: c = conn.cursor() query = "SELECT snid_in, snra_in, sndec_in, " query += "c_in, mB, t0_in, x0_in, x1_in, z_in " query += "FROM sne_params WHERE (" where_clause = None half_space = htm.halfSpaceFromRaDec(pointing_ra, pointing_dec, fov_deg) bounds = half_space.findAllTrixels(6) for bound in bounds: if where_clause is not None: where_clause += " OR (" else: where_clause = "(" if bound[0] == bound[1]: where_clause += "htmid_level_6==%d" % bound[0] else: where_clause += "htmid_level_6>=%d AND htmid_level_6<=%d" % (bound[0],bound[1]) where_clause += ")" query += where_clause+")" sn_params = c.execute(query).fetchall() sn_ra = np.array([sn[1] for sn in sn_params]) sn_dec = np.array([sn[2] for sn in sn_params]) sn_d = angularSeparation(pointing_ra, pointing_dec, sn_ra, sn_dec) valid = np.where(sn_d<=fov_deg) sn_ra_dec = {} sn_param_dict = {} for i_sn in valid[0]: sn = sn_params[i_sn] sn_param_dict[sn[0]] = sn[3:] sn_ra_dec[sn[0]] = sn[1:3] sne_in_instcat = set() d_mag_max = -1.0 with gzip.open(sne_name, 'rb') as sne_cat_file: for sne_line in sne_cat_file: instcat_params = sne_line.strip().split(b' ') sne_id = instcat_params[1].decode('utf-8') if sne_id not in sn_param_dict: try: sne_id_int = int(sne_id) assert sne_id_int<1.5e10 except (ValueError, AssertionError): raise RuntimeError("\n%s\nnot in SNe db" % sne_id) sne_in_instcat.add(sne_id) control_params = sn_param_dict[sne_id] sed_name = os.path.join(instcat_dir, instcat_params[5].decode('utf-8')) if not os.path.isfile(sed_name): raise RuntimeError("\n%s\nis not a file" % sed_name) sed = photUtils.Sed() sed.readSED_flambda(sed_name, cache_sed=False) fnorm = photUtils.getImsimFluxNorm(sed, float(instcat_params[4])) sed.multiplyFluxNorm(fnorm) sed.redshiftSED(float(instcat_params[6]), dimming=True) a_x, b_x = sed.setupCCM_ab() A_v = float(instcat_params[15]) R_v = float(instcat_params[16]) EBV = A_v/R_v sed.addDust(a_x, b_x, A_v=A_v, R_v=R_v) sn_object = SNObject() sn_object.set_MWebv(EBV) sn_object.set(c=control_params[0], x1=control_params[4], x0=control_params[3], t0=control_params[2], z=control_params[5]) sn_mag = sn_object.catsimBandMag(bp_dict[bandpass], expmjd) instcat_flux = sed.calcFlux(bp_dict[bandpass]) instcat_mag = sed.magFromFlux(instcat_flux) d_mag = (sn_mag-instcat_mag) if not np.isfinite(d_mag): if np.isfinite(sn_mag) or np.isfinite(instcat_mag): msg = '%s\ngave magnitudes %e %e (diff %e)' % (sne_id, sn_mag, instcat_mag, d_mag) print(msg) if scatter_file is not None: scatter_file.write("%e %e %e\n" % (sn_mag, instcat_mag, d_mag)) d_mag = np.abs(d_mag) if d_mag>d_mag_max: d_mag_max = d_mag #print('dmag %e -- %e (%e)' % # (d_mag, instcat_mag, # control_params[5]-float(instcat_params[6]))) msg = '\n%s\n' % sne_name ct_missing = 0 for sn_id in sn_param_dict: if sn_id in sne_in_instcat: continue control_params = sn_param_dict[sn_id] sn_object = SNObject() sn_object.set_MWebv(0.0) cc = control_params[0] x1 = control_params[4] x0 = control_params[3] t0 = control_params[2] zz = control_params[5] sn_object.set(c=cc, x1=x1, x0=x0, t0=t0, z=zz) sn_mag = sn_object.catsimBandMag(bp_dict[bandpass], expmjd) if vanishing_file is not None and np.isfinite(sn_mag): vanishing_file.write('%d %s %s %e ' % (obsid, bandpass, sn_id, sn_mag)) vanishing_file.write('%e %e %e %.4f %e %.4f %e\n' % (cc,x0,x1,t0,zz,expmjd,expmjd-t0))
class SNObject_tests(unittest.TestCase): @classmethod def tearDownClass(cls): sims_clean_up() def setUp(self): """ Setup tests SN_blank: A SNObject with no MW extinction """ mydir = get_config_dir() print('===============================') print('===============================') print (mydir) print('===============================') print('===============================') # A range of wavelengths in Ang self.wave = np.arange(3000., 12000., 50.) # Equivalent wavelenths in nm self.wavenm = self.wave / 10. # Time to be used as Peak self.mjdobs = 571190 # Check that we can set up a SED # with no extinction self.SN_blank = SNObject() self.SN_blank.setCoords(ra=30., dec=-60.) self.SN_blank.set(z=0.96, t0=571181, x1=2.66, c=0.353, x0=1.796e-6) self.SN_blank.set_MWebv(0.) self.SN_extincted = SNObject(ra=30., dec=-60.) self.SN_extincted.set(z=0.96, t0=571181, x1=2.66, c=0.353, x0=1.796112e-06) self.SNCosmoModel = self.SN_extincted.equivalentSNCosmoModel() self.rectify_photParams = PhotometricParameters() self.lsstBandPass = BandpassDict.loadTotalBandpassesFromFiles() self.SNCosmoBP = sncosmo.Bandpass(wave=self.lsstBandPass['r'].wavelen, trans=self.lsstBandPass['r'].sb, wave_unit=astropy.units.Unit('nm'), name='lsst_r') def tearDown(self): del self.SNCosmoBP del self.SN_blank del self.SN_extincted def test_SNstatenotEmpty(self): """ Check that the state of SNObject, stored in self.SNstate has valid entries for all keys and does not contain keys with None type Values. """ myDict = self.SN_extincted.SNstate for key in myDict: assert myDict[key] is not None def test_attributeDefaults(self): """ Check the defaults and the setter properties for rectifySED and modelOutSideRange """ snobj = SNObject(ra=30., dec=-60., source='salt2') self.assertEqual(snobj.rectifySED, True) self.assertEqual(snobj.modelOutSideTemporalRange, 'zero') snobj.rectifySED = False self.assertFalse(snobj.rectifySED, False) self.assertEqual(snobj.modelOutSideTemporalRange, 'zero') def test_raisingerror_forunimplementedmodelOutSideRange(self): """ check that correct error is raised if the user tries to assign an un-implemented model value to `sims.catUtils.supernovae.SNObject.modelOutSideTemporalRange` """ snobj = SNObject(ra=30., dec=-60., source='salt2') assert snobj.modelOutSideTemporalRange == 'zero' with self.assertRaises(ValueError) as context: snobj.modelOutSideTemporalRange = 'False' self.assertEqual('Model not implemented, defaulting to zero method\n', context.exception.args[0]) def test_rectifiedSED(self): """ Check for an extreme case that the SN seds are being rectified. This is done by setting up an extreme case where there will be negative seds, and checking that this is indeed the case, and checking that they are not negative if rectified. """ snobj = SNObject(ra=30., dec=-60., source='salt2') snobj.set(z=0.96, t0=self.mjdobs, x1=-3., x0=1.8e-6) snobj.rectifySED = False times = np.arange(self.mjdobs - 50., self.mjdobs + 150., 1.) badTimes = [] for time in times: sed = snobj.SNObjectSED(time=time, bandpass=self.lsstBandPass['r']) if any(sed.flambda < 0.): badTimes.append(time) # Check that there are negative SEDs assert(len(badTimes) > 0) snobj.rectifySED = True for time in badTimes: sed = snobj.SNObjectSED(time=time, bandpass=self.lsstBandPass['r']) self.assertGreaterEqual(sed.calcADU(bandpass=self.lsstBandPass['r'], photParams=self.rectify_photParams), 0.) self.assertFalse(any(sed.flambda < 0.)) def test_ComparebandFluxes2photUtils(self): """ The SNObject.catsimBandFlux computation uses the sims.photUtils.sed band flux computation under the hood. This test makes sure that these definitions are in sync """ snobject_r = self.SN_extincted.catsimBandFlux( bandpassobject=self.lsstBandPass['r'], time=self.mjdobs) # `sims.photUtils.Sed` sed = self.SN_extincted.SNObjectSED(time=self.mjdobs, bandpass=self.lsstBandPass['r']) sedflux = sed.calcFlux(bandpass=self.lsstBandPass['r']) np.testing.assert_allclose(snobject_r, sedflux / 3631.0) def test_CompareBandFluxes2SNCosmo(self): """ Compare the r band flux at a particular time computed in SNObject and SNCosmo for MW-extincted SEDs. While the underlying sed is obtained from SNCosmo the integration with the bandpass is an independent calculation in SNCosmo and catsim """ times = self.mjdobs catsim_r = self.SN_extincted.catsimBandFlux( bandpassobject=self.lsstBandPass['r'], time=times) sncosmo_r = self.SNCosmoModel.bandflux(band=self.SNCosmoBP, time=times, zpsys='ab', zp=0.) np.testing.assert_allclose(sncosmo_r, catsim_r) def test_CompareBandMags2SNCosmo(self): """ Compare the r band flux at a particular time computed in SNObject and SNCosmo for MW-extincted SEDs. Should work whenever the flux comparison above works. """ times = self.mjdobs catsim_r = self.SN_extincted.catsimBandMag( bandpassobject=self.lsstBandPass['r'], time=times) sncosmo_r = self.SNCosmoModel.bandmag(band=self.SNCosmoBP, time=times, magsys='ab') np.testing.assert_allclose(sncosmo_r, catsim_r) def test_CompareExtinctedSED2SNCosmo(self): """ Compare the extincted SEDS in SNCosmo and SNObject. Slightly more non-trivial than comparing unextincted SEDS, as the extinction in SNObject uses different code from SNCosmo. However, this is still using the same values of MWEBV, rather than reading it off a map. """ SNObjectSED = self.SN_extincted.SNObjectSED(time=self.mjdobs, wavelen=self.wavenm) SNCosmoSED = self.SNCosmoModel.flux(time=self.mjdobs, wave=self.wave) \ * 10. np.testing.assert_allclose(SNObjectSED.flambda, SNCosmoSED, rtol=1.0e-7) def test_CompareUnextinctedSED2SNCosmo(self): """ Compares the unextincted flux Densities in SNCosmo and SNObject. This is mereley a sanity check as SNObject uses SNCosmo under the hood. """ SNCosmoFluxDensity = self.SN_blank.flux(wave=self.wave, time=self.mjdobs) * 10. unextincted_sed = self.SN_blank.SNObjectSED(time=self.mjdobs, wavelen=self.wavenm) SNObjectFluxDensity = unextincted_sed.flambda np.testing.assert_allclose(SNCosmoFluxDensity, SNObjectFluxDensity, rtol=1.0e-7) def test_redshift(self): """ test that the redshift method works as expected by checking that if we redshift a SN from its original redshift orig_z to new_z where new_z is smaller (larger) than orig_z: - 1. x0 increases (decreases) - 2. source peak absolute magnitude in BesselB band stays the same """ from astropy.cosmology import FlatLambdaCDM cosmo = FlatLambdaCDM(H0=70., Om0=0.3) orig_z = self.SN_extincted.get('z') orig_x0 = self.SN_extincted.get('x0') peakabsMag = self.SN_extincted.source_peakabsmag('BessellB', 'AB', cosmo=cosmo) lowz = orig_z * 0.5 highz = orig_z * 2.0 # Test Case for lower redshift self.SN_extincted.redshift(z=lowz, cosmo=cosmo) low_x0 = self.SN_extincted.get('x0') lowPeakAbsMag = self.SN_extincted.source_peakabsmag('BessellB', 'AB', cosmo=cosmo) # Test 1. self.assertGreater(low_x0, orig_x0) # Test 2. self.assertAlmostEqual(peakabsMag, lowPeakAbsMag, places=14) # Test Case for higher redshift self.SN_extincted.redshift(z=highz, cosmo=cosmo) high_x0 = self.SN_extincted.get('x0') HiPeakAbsMag = self.SN_extincted.source_peakabsmag('BessellB', 'AB', cosmo=cosmo) # Test 1. self.assertLess(high_x0, orig_x0) # Test 2. self.assertAlmostEqual(peakabsMag, HiPeakAbsMag, places=14) def test_bandFluxErrorWorks(self): """ test that bandflux errors work even if the flux is negative """ times = self.mjdobs e = self.SN_extincted.catsimBandFluxError(times, self.lsstBandPass['r'], m5=24.5, fluxinMaggies=-1.0) assert isinstance(e, np.float) print(e) assert not(np.isinf(e) or np.isnan(e))
def _light_curves_from_query(self, cat_dict, query_result, grp, lc_per_field=None): t_dict = {} gamma_dict = {} m5_dict = {} t_min = None t_max = None for bp_name in cat_dict: self.lsstBandpassDict[bp_name].sbTophi() # generate a 2-D numpy array containing MJDs, m5, and photometric gamma values # for each observation in the given bandpass raw_array = np.array([[obs.mjd.TAI, obs.m5[bp_name], calcGamma(self.lsstBandpassDict[bp_name], obs.m5[obs.bandpass], self.phot_params)] for obs in grp if obs.bandpass == bp_name]).transpose() if len(raw_array) > 0: t_dict[bp_name] = raw_array[0] m5_dict[bp_name] = raw_array[1] gamma_dict[bp_name] = raw_array[2] local_t_min = t_dict[bp_name].min() local_t_max = t_dict[bp_name].max() if t_min is None or local_t_min < t_min: t_min = local_t_min if t_max is None or local_t_max > t_max: t_max = local_t_max snobj = SNObject() cat = cat_dict[list(cat_dict.keys())[0]] # does not need to be associated with a bandpass dummy_sed = Sed() n_actual_sn = 0 # how many SN have we actually delivered? for chunk in query_result: if lc_per_field is not None and n_actual_sn >= lc_per_field: break t_start_chunk = time.time() for sn in cat.iter_catalog(query_cache=[chunk]): sn_rng = self.sn_universe.getSN_rng(sn[1]) sn_t0 = self.sn_universe.drawFromT0Dist(sn_rng) if sn[5] <= self.z_cutoff and np.isfinite(sn_t0) and \ sn_t0 < t_max + cat.maxTimeSNVisible and \ sn_t0 > t_min - cat.maxTimeSNVisible: sn_c = self.sn_universe.drawFromcDist(sn_rng) sn_x1 = self.sn_universe.drawFromx1Dist(sn_rng) sn_x0 = self.sn_universe.drawFromX0Dist(sn_rng, sn_x1, sn_c, sn[4]) snobj.set(t0=sn_t0, c=sn_c, x1=sn_x1, x0=sn_x0, z=sn[5]) for bp_name in t_dict: t_list = t_dict[bp_name] m5_list = m5_dict[bp_name] gamma_list = gamma_dict[bp_name] bandpass = self.lsstBandpassDict[bp_name] if len(t_list) == 0: continue if snobj.maxtime() >= t_list[0] and snobj.mintime() <= t_list[-1]: active_dexes = np.where(np.logical_and(t_list >= snobj.mintime(), t_list <= snobj.maxtime())) t_active = t_list[active_dexes] m5_active = m5_list[active_dexes] gamma_active = gamma_list[active_dexes] if len(t_active) > 0: wave_ang = bandpass.wavelen*10.0 mask = np.logical_and(wave_ang > snobj.minwave(), wave_ang < snobj.maxwave()) wave_ang = wave_ang[mask] snobj.set(mwebv=sn[6]) sn_ff_buffer = snobj.flux(time=t_active, wave=wave_ang)*10.0 flambda_grid = np.zeros((len(t_active), len(bandpass.wavelen))) for ff, ff_sn in zip(flambda_grid, sn_ff_buffer): ff[mask] = np.where(ff_sn > 0.0, ff_sn, 0.0) fnu_grid = flambda_grid*bandpass.wavelen* \ bandpass.wavelen*dummy_sed._physParams.nm2m* \ dummy_sed._physParams.ergsetc2jansky/dummy_sed._physParams.lightspeed flux_list = \ (fnu_grid*bandpass.phi).sum(axis=1)*(bandpass.wavelen[1]-bandpass.wavelen[0]) acceptable = np.where(flux_list>0.0) flux_error_list = flux_list[acceptable]/ \ calcSNR_m5(dummy_sed.magFromFlux(flux_list[acceptable]), bandpass, m5_active[acceptable], self.phot_params, gamma=gamma_active[acceptable]) if len(acceptable) > 0: n_actual_sn += 1 if lc_per_field is not None and n_actual_sn > lc_per_field: break if sn[0] not in self.truth_dict: self.truth_dict[sn[0]] = {} self.truth_dict[sn[0]]['t0'] = sn_t0 self.truth_dict[sn[0]]['x1'] = sn_x1 self.truth_dict[sn[0]]['x0'] = sn_x0 self.truth_dict[sn[0]]['c'] = sn_c self.truth_dict[sn[0]]['z'] = sn[5] self.truth_dict[sn[0]]['E(B-V)'] = sn[6] if sn[0] not in self.mjd_dict: self.mjd_dict[sn[0]] = {} self.bright_dict[sn[0]] = {} self.sig_dict[sn[0]] = {} if bp_name not in self.mjd_dict[sn[0]]: self.mjd_dict[sn[0]][bp_name] = [] self.bright_dict[sn[0]][bp_name] = [] self.sig_dict[sn[0]][bp_name] = [] for tt, ff, ee in zip(t_active[acceptable], flux_list[acceptable], flux_error_list[0]): self.mjd_dict[sn[0]][bp_name].append(tt) self.bright_dict[sn[0]][bp_name].append(ff/3631.0) self.sig_dict[sn[0]][bp_name].append(ee/3631.0) print("chunk of ", len(chunk), " took ", time.time()-t_start_chunk)
reschar = ResChar.fromSNCosmoRes(resfit) print('fit passed') except: reschar = 'failure' print('failed for SNID {0} with {1} points'.format( snid, len(lcinstance.snCosmoLC()))) #if reschar != 'failure': # pass # fig = None#sncosmo.plot_lc(lcinstance.snCosmoLC(), model=(truth, reschar.sncosmoModel)) return snid, lcinstance, reschar, truth, fig snidvals = minion_params.index.values print('The list of SN has {} SN'.format(len(snidvals))) snmodel = SNObject(ra=30., dec=-30.) def writevals(snid, fh): x = inferParams(snid, snmodel, paramsDF=minion_params, lcsDF=minion, infer_method=sncosmo.fit_lc, minsnr=0.) if x[2] != 'failure': covs = map(str, x[2].covariance.values[np.triu_indices(4)]) params = map(str, x[2].parameters.values) std = str(x[2].mu_variance_linear()**0.5) ss = ','.join(params + covs + [std]) # print('cov = ' + ' '.join(covs))