out_data = mgr.dict() lock = multiprocessing.Lock() n_tot = 0 n_processed = 0 with h5py.File(obs_param_name,'r') as obs_params: for htmid_query in htmid_list: if htmid_query not in htmid_to_obs: continue n_lc_so_far = 0 for name in out_data.keys(): n_lc_so_far += len(out_data[name][0]) print('now simulating ',htmid_query,n_lc_so_far) query_level = htm.levelFromHtmid(htmid_query) trixel_query = htm.trixelFromHtmid(htmid_query) ra_query, dec_query = trixel_query.get_center() radius_query = trixel_query.get_radius() print(ra_query, dec_query, radius_query) obs_query = ObservationMetaData(pointingRA=ra_query, pointingDec=dec_query, boundType='circle', boundLength=radius_query) col_names = ['ra', 'decl', 'umag', 'gmag', 'rmag', 'imag', 'zmag', 'ymag', 'lc_id', 't0', 'var_type', 'ebv', 'parallax', 'simobjid']
htmid_level_of_interest = htm.levelFromHtmid(htmid_of_interest) obs_list = np.array(htmid_to_obs[htmid_of_interest]) obs_dex_list = obs_list-1 print(len(obs_list)) with h5py.File(obs_fname, 'r') as obs_file: shld_be = 1 + np.arange(len(obs_file['obsHistID'].value), dtype=int) np.testing.assert_array_equal(shld_be, obs_file['obsHistID'].value) np.testing.assert_array_equal(obs_file['obsHistID'].value[obs_dex_list], obs_list) obs_subset = {} for field_name in obs_file.keys(): obs_subset[field_name] = obs_file[field_name].value[obs_dex_list] trixel_of_interest = htm.trixelFromHtmid(htmid_of_interest) trixel_ra, trixel_dec = trixel_of_interest.get_center() trixel_radius = 1.05*trixel_of_interest.get_radius() trixel_obs = sims_utils.ObservationMetaData(pointingRA=trixel_ra, pointingDec=trixel_dec, boundType='circle', boundLength=trixel_radius) star_iter = star_db.query_columns(col_names, obs_metadata=trixel_obs, chunk_size=100000) ct_tot = 0 ct_kplr = 0 ct_mlt = 0 ct_rrly = 0