def for_lsst(self): """A convenience function to set the observatory location for LSST. """ lsst = simsUtils.Site(name='LSST') self.latitude_rad = math.radians(lsst.latitude) self.longitude_rad = math.radians(lsst.longitude) self.height = lsst.height
def setDefaults(self): """Set defaults for the Cerro Pachon observing site. """ lsst = simsUtils.Site(name="LSST") self.name = "Cerro Pachon" self.latitude = lsst.latitude self.longitude = lsst.longitude self.height = lsst.height self.pressure = lsst.pressure self.temperature = lsst.temperature self.relative_humidity = lsst.humidity
def readUserRegions(confFile, useExclusions=True): fieldRA = [] fieldDec = [] peakL = 25. taperL = 5 taperB = 180. maxReach = 80. maxAirmass = 10. with open(confFile, 'r') as f: for line in f: vals = line.split() if len(vals) > 0: if vals[0] == 'userRegion': ra, dec, _ = vals[2].split(',') fieldRA.append(ra) fieldDec.append(dec) elif vals[0] == 'taperL': taperL = float(vals[2]) elif vals[0] == 'taperB': taperB = float(vals[2]) elif vals[0] == 'peakL': peakL = float(vals[2]) elif vals[0] == 'maxReach': maxReach = float(vals[2]) elif vals[0] == 'MaxAirmass': maxAirmass = float(vals[2]) #print confFile, taperL, taperB, peakL, maxReach, maxAirmass fieldRA = np.array(fieldRA, dtype=float) fieldDec = np.array(fieldDec, dtype=float) if useExclusions: # Remove fields that would be excluded based on declimit from 'maxReach' and 'maxAirmass'. latLimit = np.degrees(np.arccos(1. / maxAirmass)) site = simsUtils.Site(name='LSST') latSite = site.latitude minDec = np.max([latSite - latLimit, -1 * np.abs(maxReach)]) maxDec = np.min([latSite + latLimit, np.abs(maxReach)]) condition = np.where((minDec < fieldDec) & (fieldDec < maxDec)) print confFile, minDec, maxDec fieldRA = fieldRA[condition] fieldDec = fieldDec[condition] # Remove fields that would be excluded by galactic exclusion zone. # (there are other limits that could come in due to airmass, but we won't deal with them here .. for now). galL, galB = simsUtils.galacticFromEquatorial(fieldRA, fieldDec) band = peakL - taperL if taperL != 0 and taperB != 0: condition = np.where((galL < 180.) & ( np.abs(galB) > (peakL - (band * np.abs(galL) / taperB)))) condition2 = np.where((galL > 180.) & ( np.abs(galB) > (peakL - (band * np.abs(galL - 360.) / taperB)))) fieldRA = np.concatenate([fieldRA[condition], fieldRA[condition2]]) fieldDec = np.concatenate( [fieldDec[condition], fieldDec[condition2]]) return fieldRA, fieldDec
def controlAltAzFromRaDec(raRad_in, decRad_in, longRad, latRad, mjd): """ Converts RA and Dec to altitude and azimuth @param [in] raRad is the RA in radians (observed geocentric) @param [in] decRad is the Dec in radians (observed geocentric) @param [in] longRad is the longitude of the observer in radians (positive east of the prime meridian) @param [in[ latRad is the latitude of the observer in radians (positive north of the equator) @param [in] mjd is the universal time expressed as an MJD @param [out] altitude in radians @param [out[ azimuth in radians see: http://www.stargazing.net/kepler/altaz.html#twig04 """ obs = utils.ObservationMetaData(mjd=utils.ModifiedJulianDate(UTC=mjd), site=utils.Site(longitude=np.degrees(longRad), latitude=np.degrees(latRad), name='LSST')) if hasattr(raRad_in, '__len__'): raRad, decRad = utils._observedFromICRS(raRad_in, decRad_in, obs_metadata=obs, epoch=2000.0, includeRefraction=True) else: raRad, decRad = utils._observedFromICRS(raRad_in, decRad_in, obs_metadata=obs, epoch=2000.0, includeRefraction=True) lst = utils.calcLmstLast(obs.mjd.UT1, longRad) last = lst[1] haRad = np.radians(last * 15.) - raRad sinDec = np.sin(decRad) cosLat = np.cos(latRad) sinLat = np.sin(latRad) sinAlt = sinDec*sinLat + np.cos(decRad)*cosLat*np.cos(haRad) altRad = np.arcsin(sinAlt) azRad = np.arccos((sinDec - sinAlt*sinLat) / (np.cos(altRad)*cosLat)) azRadOut = np.where(np.sin(haRad) >= 0.0, 2.0 * np.pi - azRad, azRad) if isinstance(altRad, float): return altRad, float(azRadOut) return altRad, azRadOut
def testAltAzFromRaDec(self): """ Test conversion from RA, Dec to Alt, Az """ nSamples = 100 ra = self.rng.random_sample(nSamples)*2.0*np.pi dec = (self.rng.random_sample(nSamples)-0.5)*np.pi lon_rad = 1.467 lat_rad = -0.234 controlAlt, controlAz = controlAltAzFromRaDec(ra, dec, lon_rad, lat_rad, self.mjd) obs = utils.ObservationMetaData(mjd=utils.ModifiedJulianDate(UTC=self.mjd), site=utils.Site(longitude=np.degrees(lon_rad), latitude=np.degrees(lat_rad), name='LSST')) # verify parallactic angle against an expression from # http://www.astro.washington.edu/groups/APO/Mirror.Motions/Feb.2000.Image.Jumps/report.html#Image%20motion%20directions # ra_obs, dec_obs = utils._observedFromICRS(ra, dec, obs_metadata=obs, epoch=2000.0, includeRefraction=True) lmst, last = utils.calcLmstLast(obs.mjd.UT1, lon_rad) hourAngle = np.radians(last * 15.0) - ra_obs controlSinPa = np.sin(hourAngle) * np.cos(lat_rad) / np.cos(controlAlt) testAlt, testAz, testPa = utils._altAzPaFromRaDec(ra, dec, obs) distance = utils.arcsecFromRadians(utils.haversine(controlAz, controlAlt, testAz, testAlt)) self.assertLess(distance.max(), 0.0001) self.assertLess(np.abs(np.sin(testPa) - controlSinPa).max(), self.tolerance) # test non-vectorized version for r, d in zip(ra, dec): controlAlt, controlAz = controlAltAzFromRaDec(r, d, lon_rad, lat_rad, self.mjd) testAlt, testAz, testPa = utils._altAzPaFromRaDec(r, d, obs) lmst, last = utils.calcLmstLast(obs.mjd.UT1, lon_rad) r_obs, dec_obs = utils._observedFromICRS(r, d, obs_metadata=obs, epoch=2000.0, includeRefraction=True) hourAngle = np.radians(last * 15.0) - r_obs controlSinPa = np.sin(hourAngle) * np.cos(lat_rad) / np.cos(controlAlt) distance = utils.arcsecFromRadians(utils.haversine(controlAz, controlAlt, testAz, testAlt)) self.assertLess(distance, 0.0001) self.assertLess(np.abs(np.sin(testPa) - controlSinPa), self.tolerance)
def testAltAzRADecRoundTrip(self): """ Test that altAzPaFromRaDec and raDecFromAltAz really invert each other """ mjd = 58350.0 alt_in = [] az_in = [] for alt in np.arange(0.0, 90.0, 10.0): for az in np.arange(0.0, 360.0, 10.0): alt_in.append(alt) az_in.append(az) alt_in = np.array(alt_in) az_in = np.array(az_in) for lon in (0.0, 90.0, 135.0): for lat in (60.0, 30.0, -60.0, -30.0): obs = utils.ObservationMetaData(mjd=mjd, site=utils.Site(longitude=lon, latitude=lat, name='LSST')) ra_in, dec_in = utils.raDecFromAltAz(alt_in, az_in, obs) self.assertIsInstance(ra_in, np.ndarray) self.assertIsInstance(dec_in, np.ndarray) self.assertFalse(np.isnan(ra_in).any(), msg='there were NaNs in ra_in') self.assertFalse(np.isnan(dec_in).any(), msg='there were NaNs in dec_in') # test that passing them in one at a time gives the same answer for ix in range(len(alt_in)): ra_f, dec_f = utils.raDecFromAltAz(alt_in[ix], az_in[ix], obs) self.assertIsInstance(ra_f, np.float) self.assertIsInstance(dec_f, np.float) self.assertAlmostEqual(ra_f, ra_in[ix], 12) self.assertAlmostEqual(dec_f, dec_in[ix], 12) alt_out, az_out, pa_out = utils.altAzPaFromRaDec(ra_in, dec_in, obs) self.assertFalse(np.isnan(pa_out).any(), msg='there were NaNs in pa_out') for alt_c, az_c, alt_t, az_t in \ zip(np.radians(alt_in), np.radians(az_in), np.radians(alt_out), np.radians(az_out)): distance = utils.arcsecFromRadians(utils.haversine(az_c, alt_c, az_t, alt_t)) self.assertLess(distance, 0.2)
def get_configure_dict(cls): """Get the configuration dictionary for the observatory location. Returns ------- dict The configuration dictionary for the observatory location. """ lsst = simsUtils.Site(name='LSST') conf_dict = { 'obs_site': { 'latitude': lsst.latitude, 'longitude': lsst.longitude, 'height': lsst.height } } return conf_dict
def testSunMoon(self): """ Test that the sun moon interpolation is good enough """ if self.data_present: sm = self.sm telescope = utils.Site('LSST') Observatory = ephem.Observer() Observatory.lat = telescope.latitude_rad Observatory.lon = telescope.longitude_rad Observatory.elevation = telescope.height sun = ephem.Sun() moon = ephem.Moon() mjd1 = sm.info['mjds'][0] mjd2 = sm.info['mjds'][3] mjds = np.linspace(mjd1, mjd2, 20) # Demand Moon and Sun Positions match to within 3 arcmin arcmin_places = np.abs(np.floor(np.log10(3. / 60. / 180. * np.pi))).astype(int) for mjd in mjds: Observatory.date = mjd2djd(mjd) sun.compute(Observatory) moon.compute(Observatory) pre_calced = sm.returnSunMoon(mjd) self.assertLess(np.abs(pre_calced['sunAlt'] - sun.alt), arcmin_places) sun_dist = haversine(sun.ra, sun.dec, pre_calced['sunRA'], pre_calced['sunDec']) self.assertAlmostEqual(sun_dist, 0., places=arcmin_places) self.assertLess(np.abs(pre_calced['moonAlt'] - moon.alt), arcmin_places) moon_dist = haversine(moon.ra, moon.dec, pre_calced['moonRA'], pre_calced['moonDec']) self.assertAlmostEqual(moon_dist, 0., places=arcmin_places) self.assertAlmostEqual(np.radians(pre_calced['moonSunSep']), np.radians(moon.phase / 100. * 180.), places=arcmin_places)
def generate_lookahead_tables(mjd0=59560.2, mjd_max=59621.2, timestep=5., timestep_max=20., outfile='generated_sky.npz', outpath=None, nside=32, sunLimit=-12., fieldID=False, airmass_limit=1.5, dm=0.3, verbose=True): """ Use the sky brightness model and the astronomical sky model to generate map of whether the sky will be observable at a given point in time and space, based on airmass, sky brightness, and moon location. Each feature gets its own map, where a 0 means a field or healpixel is not observable, and a 1 means it is. For now these are always 0 or 1 but they are typed as floats to accomodate future improvements """ sunLimit = np.radians(sunLimit) # Set the time steps timestep = timestep / 60. / 24. # Convert to days timestep_max = timestep_max / 60. / 24. # Convert to days # Switch the indexing to opsim field ID if requested # Look at the mjds and toss ones where the sun is up mjds = np.arange(mjd0, mjd_max + timestep, timestep) sunAlts = np.zeros(mjds.size, dtype=float) telescope = utils.Site('LSST') Observatory = ephem.Observer() Observatory.lat = telescope.latitude_rad Observatory.lon = telescope.longitude_rad Observatory.elevation = telescope.height sun = ephem.Sun() for i, mjd in enumerate(mjds): Observatory.date = mjd2djd(mjd) sun.compute(Observatory) sunAlts[i] = sun.alt mjds = mjds[np.where(sunAlts <= np.radians(sunLimit))] if fieldID: field_data = np.loadtxt('fieldID.dat', delimiter='|', skiprows=1, dtype=list( zip(['id', 'ra', 'dec'], [int, float, float]))) ra = field_data['ra'] dec = field_data['dec'] else: hpindx = np.arange(hp.nside2npix(nside)) ra, dec = utils.hpid2RaDec(nside, hpindx) if verbose: print('using %i points on the sky' % ra.size) print('using %i mjds' % mjds.size) # Set up the sky brightness model sm = sb.SkyModel(mags=True) filter_names = [u'u', u'g', u'r', u'i', u'z', u'y'] # Initialize the relevant lists sky_brightness = {u'airmass': np.zeros((len(mjds), len(ra)), dtype = float),\ u'mjds': np.zeros((len(mjds), len(ra)), dtype = float),\ u'moonangle': np.zeros((len(mjds), len(ra)), dtype = float) } vmjd = np.zeros(len(mjds)) for filter_name in filter_names: sky_brightness[filter_name] = np.zeros((len(mjds), len(ra)), dtype=float) length = mjds[-1] - mjds[0] for i, mjd in enumerate(mjds): progress = (mjd - mjd0) / length * 100 text = "\rprogress = %.1f%%" % progress sys.stdout.write(text) sys.stdout.flush() sm.setRaDecMjd(ra, dec, mjd, degrees=True) if sm.sunAlt <= sunLimit: mags = sm.returnMags() for key in filter_names: sky_brightness[key][ i] = mags[key] < 21.3 #placeholder skybrightness airmasscomp = np.bitwise_and(1.5 > sm.airmass, sm.airmass > 1.0) sky_brightness[u'airmass'][i] = airmasscomp moonangles = palpy.dsepVector(np.full_like(ra,sm.moonRA), np.full_like(dec,sm.moonDec),\ np.deg2rad(ra), np.deg2rad(dec)) sky_brightness[u'moonangle'][ i] = moonangles > 0.698 #placeholder moon angle limit, ~40 degrees vmjd[i] = mjd print('') # for key in dict_of_lists: # dict_of_lists[key] = np.array(dict_of_lists[key]) # # print(len(dict_of_lists[key])) # for key in sky_brightness: # sky_brightness[key] = np.array(sky_brightness[key]) np.savez_compressed(outfile, mjds=vmjd, look_ahead=sky_brightness)
def test_raDecFromAltAz(self): """ Test conversion of Alt, Az to Ra, Dec using data on the Sun This site gives the altitude and azimuth of the Sun as a function of time and position on the earth http://aa.usno.navy.mil/data/docs/AltAz.php This site gives the apparent geocentric RA, Dec of major celestial objects as a function of time http://aa.usno.navy.mil/data/docs/geocentric.php This site converts calendar dates into Julian Dates http://aa.usno.navy.mil/data/docs/JulianDate.php """ hours = np.radians(360.0 / 24.0) minutes = hours / 60.0 seconds = minutes / 60.0 longitude_list = [] latitude_list = [] mjd_list = [] alt_list = [] az_list = [] ra_app_list = [] dec_app_list = [] longitude_list.append(np.radians(-22.0 - 33.0 / 60.0)) latitude_list.append(np.radians(11.0 + 45.0 / 60.0)) mjd_list.append(2457364.958333 - 2400000.5) # 8 December 2015 11:00 UTC alt_list.append(np.radians(41.1)) az_list.append(np.radians(134.7)) ra_app_list.append(16.0 * hours + 59.0 * minutes + 16.665 * seconds) dec_app_list.append(np.radians(-22.0 - 42.0 / 60.0 - 2.94 / 3600.0)) longitude_list.append(np.radians(-22.0 - 33.0 / 60.0)) latitude_list.append(np.radians(11.0 + 45.0 / 60.0)) mjd_list.append(2457368.958333 - 2400000.5) # 12 December 2015 11:00 UTC alt_list.append(np.radians(40.5)) az_list.append(np.radians(134.7)) ra_app_list.append(17.0 * hours + 16.0 * minutes + 51.649 * seconds) dec_app_list.append(np.radians(-23.0 - 3 / 60.0 - 50.35 / 3600.0)) longitude_list.append(np.radians(145.0 + 23.0 / 60.0)) latitude_list.append(np.radians(-64.0 - 5.0 / 60.0)) mjd_list.append(2456727.583333 - 2400000.5) # 11 March 2014, 02:00 UTC alt_list.append(np.radians(29.5)) az_list.append(np.radians(8.2)) ra_app_list.append(23.0 * hours + 24.0 * minutes + 46.634 * seconds) dec_app_list.append(np.radians(-3.0 - 47.0 / 60.0 - 47.81 / 3600.0)) longitude_list.append(np.radians(145.0 + 23.0 / 60.0)) latitude_list.append(np.radians(-64.0 - 5.0 / 60.0)) mjd_list.append(2456731.583333 - 2400000.5) # 15 March 2014, 02:00 UTC alt_list.append(np.radians(28.0)) az_list.append(np.radians(7.8)) ra_app_list.append(23.0 * hours + 39.0 * minutes + 27.695 * seconds) dec_app_list.append(np.radians(-2.0 - 13.0 / 60.0 - 18.32 / 3600.0)) for longitude, latitude, mjd, alt, az, ra_app, dec_app in \ zip(longitude_list, latitude_list, mjd_list, alt_list, az_list, ra_app_list, dec_app_list): obs = utils.ObservationMetaData(site=utils.Site(longitude=np.degrees(longitude), latitude=np.degrees(latitude), name='LSST'), mjd=utils.ModifiedJulianDate(UTC=mjd)) ra_icrs, dec_icrs = utils._raDecFromAltAz(alt, az, obs) ra_test, dec_test = utils._appGeoFromICRS(ra_icrs, dec_icrs, mjd=obs.mjd) distance = np.degrees(utils.haversine(ra_app, dec_app, ra_test, dec_test)) # this is all the precision we have in the alt,az data taken from the USNO self.assertLess(distance, 0.1) correction = np.degrees(utils.haversine(ra_test, dec_test, ra_icrs, dec_icrs)) self.assertLess(distance, correction)
def generate_sky(mjd0=59560.2, mjd_max=59565.2, timestep=5., timestep_max=15., outfile=None, outpath=None, nside=32, sunLimit=-12., fieldID=False, airmass_overhead=1.5, dm=0.2, airmass_limit=2.5, moon_dist_limit=10., planet_dist_limit=2., alt_limit=86.5, requireStride=3, verbose=True): """ Pre-compute the sky brighntess for a series of mjd dates at the LSST site. Parameters ---------- mjd0 : float (9560.2) The starting MJD time duration : float The length of time to generate sky maps for (years) timestep : float (5.) The timestep between sky maps (minutes) timestep_max : float (20.) The maximum alowable timestep (minutes) outfile : str The name of the output file to save the results in nside : in (32) The nside to run the healpixel map at sunLimit : float (-12) The maximum altitude of the sun to try and generate maps for. MJDs with a higher sun altitude are dropped fieldID : bool (False) If True, computes sky magnitudes at OpSim field locations. If False computes at healpixel centers. airmass_overhead : float The airmass region to demand sky models are well matched before dropping and assuming the timestep can be interpolated dm : float If a skymap can be interpolated from neighboring maps with precision dm, that mjd is dropped. airmass_limit : float Pixels with an airmass greater than airmass_limit are masked moon_dist_limit : float Pixels (fields) closer than moon_dist_limit (degrees) are masked planet_dist_limit : float (2.) Pixels (fields) closer than planet_dist_limit (degrees) to Venus, Mars, Jupiter, or Saturn are masked alt_limit : float (86.5) Altitude limit of the telescope (degrees). Altitudes higher than this are masked. requireStride : int (3) Require every nth mjd. Makes it possible to easily select an evenly spaced number states of a pixel. Returns ------- dict_of_lists : dict includes key-value pairs: mjds : the MJD at every computation. Not evenly spaced as no computations. airmass : the airmass maps for each MJD masks : The boolean mask map for each MJD (True means the pixel should be masked) sunAlts : The sun altitude at each MJD sky_brightness : dict Has keys for each u,g,r,i,z,y filter. Each one is a 2-d array with dimensions of healpix ID and mjd (matched to the mjd list above). """ sunLimit_rad = np.radians(sunLimit) alt_limit_rad = np.radians(alt_limit) # Set the time steps timestep = timestep / 60. / 24. # Convert to days timestep_max = timestep_max / 60. / 24. # Convert to days # Switch the indexing to opsim field ID if requested # Look at the mjds and toss ones where the sun is up mjds = np.arange(mjd0, mjd_max + timestep, timestep) sunAlts = np.zeros(mjds.size, dtype=float) if outfile is None: outfile = '%i_%i.npz' % (mjd0, mjd_max) if outpath is not None: outfile = os.path.join(outpath, outfile) telescope = utils.Site('LSST') Observatory = ephem.Observer() Observatory.lat = telescope.latitude_rad Observatory.lon = telescope.longitude_rad Observatory.elevation = telescope.height sun = ephem.Sun() # Planets we want to avoid planets = [ephem.Venus(), ephem.Mars(), ephem.Jupiter(), ephem.Saturn()] # Compute the sun altitude for all the possible MJDs for i, mjd in enumerate(mjds): Observatory.date = mjd2djd(mjd) sun.compute(Observatory) sunAlts[i] = sun.alt mjds = mjds[np.where(sunAlts <= sunLimit_rad)] required_mjds = mjds[::3] if fieldID: field_data = np.loadtxt('fieldID.dat', delimiter='|', skiprows=1, dtype=list( zip(['id', 'ra', 'dec'], [int, float, float]))) ra = field_data['ra'] dec = field_data['dec'] else: hpindx = np.arange(hp.nside2npix(nside)) ra, dec = utils.hpid2RaDec(nside, hpindx) ra_rad = np.radians(ra) dec_rad = np.radians(dec) if verbose: print('using %i points on the sky' % ra.size) print('using %i mjds' % mjds.size) # Set up the sky brightness model sm = sb.SkyModel(mags=True, airmass_limit=airmass_limit) filter_names = ['u', 'g', 'r', 'i', 'z', 'y'] # Initialize the relevant lists dict_of_lists = { 'airmass': [], 'sunAlts': [], 'mjds': [], 'airmass_masks': [], 'planet_masks': [], 'moonAlts': [], 'moonRAs': [], 'moonDecs': [], 'sunRAs': [], 'sunDecs': [], 'moonSunSep': [], 'moon_masks': [], 'zenith_masks': [] } sky_brightness = {} for filter_name in filter_names: sky_brightness[filter_name] = [] length = mjds[-1] - mjds[0] last_5_mags = [] last_5_mjds = [] full_masks = [] for mjd in mjds: progress = (mjd - mjd0) / length * 100 text = "\rprogress = %.1f%%" % progress sys.stdout.write(text) sys.stdout.flush() sm.setRaDecMjd(ra, dec, mjd, degrees=True) if sm.sunAlt <= sunLimit_rad: mags = sm.returnMags() for key in filter_names: sky_brightness[key].append(mags[key]) dict_of_lists['airmass'].append(sm.airmass) dict_of_lists['sunAlts'].append(sm.sunAlt) dict_of_lists['mjds'].append(mjd) dict_of_lists['sunRAs'].append(sm.sunRA) dict_of_lists['sunDecs'].append(sm.sunDec) dict_of_lists['moonRAs'].append(sm.moonRA) dict_of_lists['moonDecs'].append(sm.moonDec) dict_of_lists['moonSunSep'].append(sm.moonSunSep) dict_of_lists['moonAlts'].append(sm.moonAlt) last_5_mjds.append(mjd) last_5_mags.append(mags) if len(last_5_mjds) > 5: del last_5_mjds[0] del last_5_mags[0] masks = { 'moon': None, 'airmass': None, 'planet': None, 'zenith': None } for mask in masks: masks[mask] = np.zeros(np.size(ra), dtype=bool) masks[mask].fill(False) # Apply airmass masking limit masks['airmass'][np.where((sm.airmass > airmass_limit) | (sm.airmass < 1.))] = True # Apply moon distance limit masks['moon'][np.where( sm.moonTargSep <= np.radians(moon_dist_limit))] = True # Apply altitude limit masks['zenith'][np.where(sm.alts >= alt_limit_rad)] = True # Apply the planet distance limits Observatory.date = mjd2djd(mjd) for planet in planets: planet.compute(Observatory) distances = utils.haversine(ra_rad, dec_rad, planet.ra, planet.dec) masks['planet'][np.where( distances <= np.radians(planet_dist_limit))] = True full_mask = np.zeros(np.size(ra), dtype=bool) full_mask.fill(False) for key in masks: dict_of_lists[key + '_masks'].append(masks[key]) full_mask[masks[key]] = True full_masks.append(full_mask) if len(dict_of_lists['airmass']) > 3: if dict_of_lists['mjds'][-2] not in required_mjds: # Check if we can interpolate the second to last sky brightnesses overhead = np.where( (dict_of_lists['airmass'][-1] <= airmass_overhead) & (dict_of_lists['airmass'][-2] <= airmass_overhead) & (~full_masks[-1]) & (~full_masks[-2])) if (np.size(overhead[0]) > 0) & (dict_of_lists['mjds'][-1] - dict_of_lists['mjds'][-3] < timestep_max): can_interp = True for mjd2 in last_5_mjds: mjd1 = dict_of_lists['mjds'][-3] mjd3 = dict_of_lists['mjds'][-1] if (mjd2 > mjd1) & (mjd2 < mjd3): indx = np.where(last_5_mjds == mjd2)[0] # Linear interpolation weights wterm = (mjd2 - mjd1) / (mjd3 - mjd1) w1 = 1. - wterm w2 = wterm for filter_name in filter_names: interp_sky = w1 * sky_brightness[ filter_name][-3][overhead] interp_sky += w2 * sky_brightness[ filter_name][-1][overhead] diff = np.abs(last_5_mags[int( indx)][filter_name][overhead] - interp_sky) if np.size(diff[~np.isnan(diff)]) > 0: if np.max(diff[~np.isnan(diff)]) > dm: can_interp = False if can_interp: for key in dict_of_lists: del dict_of_lists[key][-2] for key in sky_brightness: del sky_brightness[key][-2] print('') for key in dict_of_lists: dict_of_lists[key] = np.array(dict_of_lists[key]) for key in sky_brightness: sky_brightness[key] = np.array(sky_brightness[key]) import lsst.sims.skybrightness_pre version = lsst.sims.skybrightness_pre.version.__version__ fingerprint = lsst.sims.skybrightness_pre.version.__fingerprint__ # Generate a header to save all the kwarg info for how this run was computed header = { 'mjd0': mjd0, 'mjd_max': mjd_max, 'timestep': timestep, 'timestep_max': timestep_max, 'outfile': outfile, 'outpath': outpath, 'nside': nside, 'sunLimit': sunLimit, 'fieldID': fieldID, 'airmas_overhead': airmass_overhead, 'dm': dm, 'airmass_limit': airmass_limit, 'moon_dist_limit': moon_dist_limit, 'planet_dist_limit': planet_dist_limit, 'alt_limit': alt_limit, 'ra': ra, 'dec': dec, 'verbose': verbose, 'required_mjds': required_mjds, 'version': version, 'fingerprint': fingerprint } np.savez(outfile, dict_of_lists=dict_of_lists, header=header) # Convert sky_brightness to a true array so it's easier to save types = [float] * len(sky_brightness.keys()) result = np.zeros(sky_brightness[list(sky_brightness.keys())[0]].shape, dtype=list(zip(sky_brightness.keys(), types))) for key in sky_brightness.keys(): result[key] = sky_brightness[key] np.save(outfile[:-3] + 'npy', result)
def generate_sky(mjd0=59560.2, duration=0.01, timestep=5., timestep_max=20., outfile='generated_sky.npz', nside=32, sunLimit=-12., fieldID=False, airmass_limit=1.5, dm=0.3, verbose=True): """ Use the sky brightness model to generate a number of useful numpy arrays that can be used to look-up sky brighntess and other pre-computed info """ sunLimit = np.radians(sunLimit) # Set the time steps mjd_max = mjd0 + duration*365.25 timestep = timestep / 60. / 24. # Convert to days timestep_max = timestep_max / 60. / 24. # Convert to days # Switch the indexing to opsim field ID if requested # Look at the mjds and toss ones where the sun is up mjds = np.arange(mjd0, mjd_max+timestep, timestep) sunAlts = np.zeros(mjds.size, dtype=float) telescope = utils.Site('LSST') Observatory = ephem.Observer() Observatory.lat = telescope.latitude_rad Observatory.lon = telescope.longitude_rad Observatory.elevation = telescope.height sun = ephem.Sun() for i, mjd in enumerate(mjds): Observatory.date = mjd2djd(mjd) sun.compute(Observatory) sunAlts[i] = sun.alt mjds = mjds[np.where(sunAlts <= np.radians(sunLimit))] if fieldID: field_data = np.loadtxt('fieldID.dat', delimiter='|', skiprows=1, dtype=list(zip(['id', 'ra', 'dec'], [int, float, float]))) ra = field_data['ra'] dec = field_data['dec'] else: hpindx = np.arange(hp.nside2npix(nside)) ra, dec = utils.hpid2RaDec(nside, hpindx) if verbose: print('using %i points on the sky' % ra.size) print('using %i mjds' % mjds.size) # Set up the sky brightness model sm = sb.SkyModel(mags=True) filter_names = ['u', 'g', 'r', 'i', 'z', 'y'] # Initialize the relevant lists dict_of_lists = {'airmass': [], 'sunAlts': [], 'mjds': []} sky_brightness = {} for filter_name in filter_names: sky_brightness[filter_name] = [] length = mjds[-1] - mjds[0] for mjd in mjds: progress = (mjd-mjd0)/length*100 text = "\rprogress = %.1f%%"%progress sys.stdout.write(text) sys.stdout.flush() sm.setRaDecMjd(ra, dec, mjd, degrees=True) if sm.sunAlt <= sunLimit: mags = sm.returnMags() for key in filter_names: sky_brightness[key].append(mags[key]) dict_of_lists['airmass'].append(sm.airmass) dict_of_lists['sunAlts'].append(sm.sunAlt) dict_of_lists['mjds'].append(mjd) # XXX don't toss things now. if False: # Check if we can interpolate the second to last sky brightnesses overhead = np.where((dict_of_lists['airmass'][-1] <= airmass_limit) & (dict_of_lists['airmass'][-2] <= airmass_limit)) # XXX -- might need to also excude things near the moon if np.size(overhead[0]) > 0: can_interp = True mjd1 = dict_of_lists['mjds'][-3] mjd2 = dict_of_lists['mjds'][-2] mjd3 = dict_of_lists['mjds'][-1] # Linear interpolation weights wterm = (mjd2 - mjd1) / (mjd3-mjd1) w1 = 1. - wterm w2 = wterm for filter_name in filter_names: interp_sky = w1 * sky_brightness[filter_name][-3][overhead] interp_sky += w2 * sky_brightness[filter_name][-1][overhead] diff = np.abs(sky_brightness[filter_name][-2][overhead]-interp_sky) if np.size(diff[~np.isnan(diff)]) > 0: if np.max(diff[~np.isnan(diff)]) > dm: can_interp = False # If the timestep is getting big, don't interp even if you can if (dict_of_lists['mjds'][-3] - dict_of_lists['mjds'][-2]) > timestep_max: can_interp = False if can_interp: for key in dict_of_lists: del dict_of_lists[key][-2] for key in sky_brightness: del sky_brightness[key][-2] print('') for key in dict_of_lists: dict_of_lists[key] = np.array(dict_of_lists[key]) for key in sky_brightness: sky_brightness[key] = np.array(sky_brightness[key]) np.savez(outfile, dict_of_lists = dict_of_lists, sky_brightness=sky_brightness)