Example #1
0
def load_model(model_file, cuda):
    # Load model
    model = torch.load(model_file, map_location=lambda storage, loc: storage)
    if cuda:
        model.cuda()
    model.rnn.flatten_parameters()

    # Send extra argument with model parameters to forward function
    model.rnn.forward = lambda input, hidden: lstm.forward(model.rnn, input, hidden)
    model_original = copy.deepcopy(model.state_dict())
    model.load_state_dict(model_original)

    return model
Example #2
0
]
gold = pandas.read_csv(args.input + '.gold',
                       sep='\t',
                       header=None,
                       names=['verb_pos', 'correct', 'wrong', 'nattr'])

# Load model
print('Loading models...')
import lstm
print('\nmodel: ' + args.model + '\n')
model = torch.load(
    args.model,
    map_location=lambda storage, loc: storage)  # requires GPU model
model.rnn.flatten_parameters()
# hack the forward function to send an extra argument containing the model parameters
model.rnn.forward = lambda input, hidden: lstm.forward(model.rnn, input, hidden
                                                       )
model_orig_state = copy.deepcopy(model.state_dict())

log_p_targets_correct = np.zeros((len(sentences), 1))
log_p_targets_wrong = np.zeros((len(sentences), 1))

model.load_state_dict(model_orig_state)
stime = time.time()

output_fn = args.output + '.abl'

if args.lang == 'en':
    init_sentence = " ".join([
        "In service , the aircraft was operated by a crew of five and could accommodate either 30 paratroopers , 32 <unk> and 28 sitting casualties , or 50 fully equipped troops . <eos>",
        "He even speculated that technical classes might some day be held \" for the better training of workmen in their several crafts and industries . <eos>",
        "After the War of the Holy League in 1537 against the Ottoman Empire , a truce between Venice and the Ottomans was created in 1539 . <eos>",