def build_network(net_name='lstm', rep_dim=10): known_networks = ('lstm', 'lstm_stacked', 'lstm_autoencoder', 'rec') assert net_name in known_networks net_name = net_name.strip() if net_name == 'lstm': return LSTMNet() if net_name == 'lstm_stacked': return LSTMNetStacked() if net_name == 'lstm_autoencoder': return LSTMEncoder(rep_dim=rep_dim) if net_name == 'rec': return RecAutoencoder(rep_dim=rep_dim) return None
def experiment(variant): from traffic.make_env import make_env expl_env = make_env(args.exp_name, **variant['env_kwargs']) eval_env = make_env(args.exp_name, **variant['env_kwargs']) obs_dim = eval_env.observation_space.low.size action_dim = eval_env.action_space.n label_num = expl_env.label_num label_dim = expl_env.label_dim max_path_length = variant['trainer_kwargs']['max_path_length'] if variant['load_kwargs']['load']: load_dir = variant['load_kwargs']['load_dir'] load_data = torch.load(load_dir + '/params.pkl', map_location='cpu') policy = load_data['trainer/policy'] vf = load_data['trainer/value_function'] else: hidden_dim = variant['lstm_kwargs']['hidden_dim'] num_lstm_layers = variant['lstm_kwargs']['num_layers'] node_dim = variant['gnn_kwargs']['node_dim'] node_num = expl_env.max_veh_num + 1 input_node_dim = int(obs_dim / node_num) a_0 = np.zeros(action_dim) h1_0 = np.zeros((node_num, hidden_dim * num_lstm_layers)) c1_0 = np.zeros((node_num, hidden_dim * num_lstm_layers)) h2_0 = np.zeros((node_num, hidden_dim * num_lstm_layers)) c2_0 = np.zeros((node_num, hidden_dim * num_lstm_layers)) latent_0 = (h1_0, c1_0, h2_0, c2_0) from lstm_net import LSTMNet lstm1_ego = LSTMNet(input_node_dim, action_dim, hidden_dim, num_lstm_layers) lstm1_other = LSTMNet(input_node_dim, 0, hidden_dim, num_lstm_layers) lstm2_ego = LSTMNet(node_dim, 0, hidden_dim, num_lstm_layers) lstm2_other = LSTMNet(node_dim, 0, hidden_dim, num_lstm_layers) from graph_builder import TrafficGraphBuilder gb = TrafficGraphBuilder( input_dim=hidden_dim, node_num=node_num, ego_init=torch.tensor([0., 1.]), other_init=torch.tensor([1., 0.]), ) from gnn_net import GNNNet gnn = GNNNet( pre_graph_builder=gb, node_dim=variant['gnn_kwargs']['node_dim'], conv_type=variant['gnn_kwargs']['conv_type'], num_conv_layers=variant['gnn_kwargs']['num_layers'], hidden_activation=variant['gnn_kwargs']['activation'], ) from gnn_lstm2_net import GNNLSTM2Net policy_net = GNNLSTM2Net(node_num, gnn, lstm1_ego, lstm1_other, lstm2_ego, lstm2_other) from layers import FlattenLayer, SelectLayer decoder = nn.Sequential(SelectLayer(-2, 0), FlattenLayer(2), nn.ReLU(), nn.Linear(hidden_dim, action_dim)) from layers import ReshapeLayer sup_learner = nn.Sequential( SelectLayer(-2, np.arange(1, node_num)), nn.ReLU(), nn.Linear(hidden_dim, label_dim), ) from sup_softmax_lstm_policy import SupSoftmaxLSTMPolicy policy = SupSoftmaxLSTMPolicy( a_0=a_0, latent_0=latent_0, obs_dim=obs_dim, action_dim=action_dim, lstm_net=policy_net, decoder=decoder, sup_learner=sup_learner, ) print('parameters: ', np.sum([p.view(-1).shape[0] for p in policy.parameters()])) vf = Mlp( hidden_sizes=[32, 32], input_size=obs_dim, output_size=1, ) vf_criterion = nn.MSELoss() from rlkit.torch.policies.make_deterministic import MakeDeterministic eval_policy = MakeDeterministic(policy) expl_policy = policy eval_path_collector = MdpPathCollector( eval_env, eval_policy, ) expl_path_collector = MdpPathCollector( expl_env, expl_policy, ) from sup_replay_buffer import SupReplayBuffer replay_buffer = SupReplayBuffer( observation_dim=obs_dim, action_dim=action_dim, label_dim=label_num, max_replay_buffer_size=int(1e6), max_path_length=max_path_length, recurrent=True, ) from rlkit.torch.vpg.ppo_sup_vanilla import PPOSupVanillaTrainer trainer = PPOSupVanillaTrainer(policy=policy, value_function=vf, vf_criterion=vf_criterion, replay_buffer=replay_buffer, recurrent=True, **variant['trainer_kwargs']) algorithm = TorchOnlineRLAlgorithm( trainer=trainer, exploration_env=expl_env, evaluation_env=eval_env, exploration_data_collector=expl_path_collector, evaluation_data_collector=eval_path_collector, log_path_function=get_traffic_path_information, **variant['algorithm_kwargs']) algorithm.to(ptu.device) algorithm.train()
def experiment(variant): from simple_sup_lstm import SimpleSupLSTMEnv expl_env = SimpleSupLSTMEnv(**variant['env_kwargs']) eval_env = SimpleSupLSTMEnv(**variant['env_kwargs']) obs_dim = eval_env.observation_space.low.size action_dim = eval_env.action_space.n label_num = expl_env.label_num label_dim = expl_env.label_dim if variant['load_kwargs']['load']: load_dir = variant['load_kwargs']['load_dir'] load_data = torch.load(load_dir + '/params.pkl', map_location='cpu') policy = load_data['trainer/policy'] vf = load_data['trainer/value_function'] else: hidden_dim = variant['lstm_kwargs']['hidden_dim'] num_lstm_layers = variant['lstm_kwargs']['num_layers'] node_dim = variant['gnn_kwargs']['node_dim'] node_num = expl_env.node_num input_node_dim = int(obs_dim / node_num) a_0 = np.zeros(action_dim) h1_0 = np.zeros((node_num, hidden_dim * num_lstm_layers)) c1_0 = np.zeros((node_num, hidden_dim * num_lstm_layers)) h2_0 = np.zeros((node_num, hidden_dim * num_lstm_layers)) c2_0 = np.zeros((node_num, hidden_dim * num_lstm_layers)) latent_0 = (h1_0, c1_0, h2_0, c2_0) from lstm_net import LSTMNet lstm1_ego = LSTMNet(input_node_dim, action_dim, hidden_dim, num_lstm_layers) lstm1_other = LSTMNet(input_node_dim, 0, hidden_dim, num_lstm_layers) lstm2_ego = LSTMNet(node_dim, 0, hidden_dim, num_lstm_layers) lstm2_other = LSTMNet(node_dim, 0, hidden_dim, num_lstm_layers) from graph_builder import TrafficGraphBuilder gb = TrafficGraphBuilder( input_dim=hidden_dim, node_num=node_num, ego_init=torch.tensor([0., 1.]), other_init=torch.tensor([1., 0.]), ) from gnn_net import GNNNet gnn = GNNNet( pre_graph_builder=gb, node_dim=variant['gnn_kwargs']['node_dim'], conv_type=variant['gnn_kwargs']['conv_type'], num_conv_layers=variant['gnn_kwargs']['num_layers'], hidden_activation=variant['gnn_kwargs']['activation'], ) from gnn_lstm2_net import GNNLSTM2Net policy_net = GNNLSTM2Net(node_num, gnn, lstm1_ego, lstm1_other, lstm2_ego, lstm2_other) from layers import FlattenLayer, SelectLayer post_net = nn.Sequential(SelectLayer(-2, 0), FlattenLayer(2), nn.ReLU(), nn.Linear(hidden_dim, action_dim)) from softmax_lstm_policy import SoftmaxLSTMPolicy policy = SoftmaxLSTMPolicy( a_0=a_0, latent_0=latent_0, obs_dim=obs_dim, action_dim=action_dim, lstm_net=policy_net, post_net=post_net, ) print('parameters: ', np.sum([p.view(-1).shape[0] for p in policy.parameters()])) vf = Mlp( hidden_sizes=[32, 32], input_size=obs_dim, output_size=1, ) # TODO: id is also an input vf_criterion = nn.MSELoss() from rlkit.torch.policies.make_deterministic import MakeDeterministic eval_policy = MakeDeterministic(policy) expl_policy = policy eval_path_collector = MdpPathCollector( eval_env, eval_policy, ) expl_path_collector = MdpPathCollector( expl_env, expl_policy, ) trainer = PPOTrainer(policy=policy, value_function=vf, vf_criterion=vf_criterion, recurrent=True, **variant['trainer_kwargs']) algorithm = TorchOnlineRLAlgorithm( trainer=trainer, exploration_env=expl_env, evaluation_env=eval_env, exploration_data_collector=expl_path_collector, evaluation_data_collector=eval_path_collector, **variant['algorithm_kwargs']) algorithm.to(ptu.device) algorithm.train()
def experiment(variant): from traffic.make_env import make_env expl_env = make_env(args.exp_name, **variant['env_kwargs']) eval_env = make_env(args.exp_name, **variant['env_kwargs']) obs_dim = eval_env.observation_space.low.size action_dim = eval_env.action_space.n label_num = expl_env.label_num label_dim = expl_env.label_dim max_path_length = variant['trainer_kwargs']['max_path_length'] if variant['load_kwargs']['load']: load_dir = variant['load_kwargs']['load_dir'] load_data = torch.load(load_dir + '/params.pkl', map_location='cpu') policy = load_data['trainer/policy'] vf = load_data['trainer/value_function'] else: hidden_dim = variant['lstm_kwargs']['hidden_dim'] num_layers = variant['lstm_kwargs']['num_layers'] a_0 = np.zeros(action_dim) h_0 = np.zeros(hidden_dim * num_layers) c_0 = np.zeros(hidden_dim * num_layers) latent_0 = (h_0, c_0) from lstm_net import LSTMNet lstm_net = LSTMNet(obs_dim, action_dim, hidden_dim, num_layers) decoder = nn.Linear(hidden_dim, action_dim) from layers import ReshapeLayer sup_learner = nn.Sequential( nn.Linear(hidden_dim, int(label_num * label_dim)), ReshapeLayer(shape=(label_num, label_dim)), ) from sup_softmax_lstm_policy import SupSoftmaxLSTMPolicy policy = SupSoftmaxLSTMPolicy( a_0=a_0, latent_0=latent_0, obs_dim=obs_dim, action_dim=action_dim, lstm_net=lstm_net, decoder=decoder, sup_learner=sup_learner, ) print('parameters: ', np.sum([p.view(-1).shape[0] for p in policy.parameters()])) vf = Mlp( hidden_sizes=[32, 32], input_size=obs_dim, output_size=1, ) vf_criterion = nn.MSELoss() from rlkit.torch.policies.make_deterministic import MakeDeterministic eval_policy = MakeDeterministic(policy) expl_policy = policy eval_path_collector = MdpPathCollector( eval_env, eval_policy, ) expl_path_collector = MdpPathCollector( expl_env, expl_policy, ) from sup_replay_buffer import SupReplayBuffer replay_buffer = SupReplayBuffer( observation_dim=obs_dim, action_dim=action_dim, label_dim=label_num, max_replay_buffer_size=int(1e6), max_path_length=max_path_length, recurrent=True, ) from rlkit.torch.vpg.ppo_sup import PPOSupTrainer trainer = PPOSupTrainer(policy=policy, value_function=vf, vf_criterion=vf_criterion, replay_buffer=replay_buffer, recurrent=True, **variant['trainer_kwargs']) algorithm = TorchOnlineRLAlgorithm( trainer=trainer, exploration_env=expl_env, evaluation_env=eval_env, exploration_data_collector=expl_path_collector, evaluation_data_collector=eval_path_collector, log_path_function=get_traffic_path_information, **variant['algorithm_kwargs']) algorithm.to(ptu.device) algorithm.train()
def experiment(variant): from simple_sup_lstm import SimpleSupLSTMEnv expl_env = SimpleSupLSTMEnv(**variant['env_kwargs']) eval_env = SimpleSupLSTMEnv(**variant['env_kwargs']) obs_dim = eval_env.observation_space.low.size action_dim = eval_env.action_space.n label_num = expl_env.label_num label_dim = expl_env.label_dim if variant['load_kwargs']['load']: load_dir = variant['load_kwargs']['load_dir'] load_data = torch.load(load_dir + '/params.pkl', map_location='cpu') policy = load_data['trainer/policy'] vf = load_data['trainer/value_function'] else: hidden_dim = variant['lstm_kwargs']['hidden_dim'] num_layers = variant['lstm_kwargs']['num_layers'] a_0 = np.zeros(action_dim) h_0 = np.zeros(hidden_dim * num_layers) c_0 = np.zeros(hidden_dim * num_layers) latent_0 = (h_0, c_0) from lstm_net import LSTMNet lstm_net = LSTMNet(obs_dim, action_dim, hidden_dim, num_layers) post_net = torch.nn.Linear(hidden_dim, action_dim) from softmax_lstm_policy import SoftmaxLSTMPolicy policy = SoftmaxLSTMPolicy( a_0=a_0, latent_0=latent_0, obs_dim=obs_dim, action_dim=action_dim, lstm_net=lstm_net, post_net=post_net, ) print('parameters: ', np.sum([p.view(-1).shape[0] for p in policy.parameters()])) vf = Mlp( hidden_sizes=[32, 32], input_size=obs_dim, output_size=1, ) vf_criterion = nn.MSELoss() from rlkit.torch.policies.make_deterministic import MakeDeterministic eval_policy = MakeDeterministic(policy) expl_policy = policy eval_path_collector = MdpPathCollector( eval_env, eval_policy, ) expl_path_collector = MdpPathCollector( expl_env, expl_policy, ) trainer = PPOTrainer(policy=policy, value_function=vf, vf_criterion=vf_criterion, recurrent=True, **variant['trainer_kwargs']) algorithm = TorchOnlineRLAlgorithm( trainer=trainer, exploration_env=expl_env, evaluation_env=eval_env, exploration_data_collector=expl_path_collector, evaluation_data_collector=eval_path_collector, **variant['algorithm_kwargs']) algorithm.to(ptu.device) algorithm.train()