Example #1
0
def imdb_experient():
  model_class = gnn_models.SagCWL2GCN
  dsm = eval_ds.IMDB_8()

  model = model_class(
    act="sigmoid", local_act="sigmoid", squeeze_output=True,
    conv_layer_dims=[dsm.dim_wl2_features(), 40, 40, 40, 1],
    att_conv_layer_dims=[dsm.dim_wl2_features(), 1],
    conv_stack_tf="keep_input",
    bias=True)

  opt = keras.optimizers.Adam(0.0007)

  model.compile(
    optimizer=opt,
    loss="binary_crossentropy",
    metrics=["accuracy"])

  train, val = dsm.get_train_fold(0, output_type=model_class.input_type)
  test = dsm.get_test_fold(0, output_type=model_class.input_type)

  evaluate.train(
    model, train, test, verbose=2, epochs=1000,
    label=f"{dsm.name}_{model.name}")
  print(model.evaluate(test))
Example #2
0
def wl2_power_experiment():
  # model_class = gnn_models.AvgGIN
  model_class = gnn_models.AvgCWL2GCN
  model_class = gnn_models.with_fc(model_class)
  dsm = synthetic.threesix_dataset(stored=True)(
    wl2_neighborhood=1)  # ok(3, 2, 1)

  if model_class.input_type == "dense":
    in_dim = dsm.dim_dense_features()
  elif model_class.input_type == "wl1":
    in_dim = dsm.dim_wl1_features()
  else:
    in_dim = dsm.dim_wl2_features()

  if in_dim == 0:
    in_dim = 1

  opt = keras.optimizers.Adam(0.1)

  model = model_class(
    act="sigmoid", squeeze_output=True,
    layer_dims=[in_dim, 4, 1],
    fc_layer_dims=[1, 10, 1],
    neighborhood_mask=1,  # ok(3, 2), nok(-1, 1)
    bias=False, no_local_hash=True)

  model.compile(
    optimizer=opt,
    loss="binary_crossentropy",
    metrics=["accuracy"])

  ds = dsm.get_all(
    output_type=model_class.input_type,
    shuffle=True)

  evaluate.train(
    model, ds, verbose=1,
    epochs=200, patience=200,
    label=f"{dsm.name}_{model.name}")

  print(
    list(dsm.get_all(output_type="dense"))[0][1].numpy(),
    model.predict(dsm.get_all(output_type=model_class.input_type)))
Example #3
0
def synthetic_experiment2():
  model_class = gnn_models.AvgCWL2GCN
  dsm = synthetic.balanced_triangle_classification_dataset(stored=True)(
    with_holdout=False,
    wl2_neighborhood=1,
    wl2_batch_size=dict(batch_graph_count=228))

  if model_class.input_type == "dense":
    in_dim = dsm.dim_dense_features()
  else:
    in_dim = dsm.dim_wl2_features()

  if in_dim == 0:
    in_dim = 1

  opt = keras.optimizers.Adam(0.0005)

  model = model_class(
    act="sigmoid", local_act="relu",
    squeeze_output=True,
    layer_dims=[in_dim, 32, 32, 32, 1],
    att_conv_layer_dims=[in_dim, 32, 32, 32, 1],
    bias=True, no_local_hash=True)

  model.compile(
    optimizer=opt,
    loss="binary_crossentropy",
    metrics=["accuracy"])

  i = 5
  ds = dsm.get_train_fold(
    i, output_type=model_class.input_type)
  ds_test = dsm.get_test_fold(
    i, output_type=model_class.input_type)

  evaluate.train(
    model, ds, ds_test, verbose=2,
    epochs=5000, patience=2000,
    label=f"{dsm.name}_{model.name}")
Example #4
0
def proteins_experient():
  model_class = gnn_models.AvgWL2GCN
  dsm = eval_ds.Proteins_6()

  model = model_class(
    act="sigmoid", squeeze_output=True,
    conv_layer_dims=[dsm.dim_wl2_features(), 64, 64, 64, 1],
    vert_only_pool=False,
    bias=True)

  opt = keras.optimizers.Adam(0.0001)

  model.compile(
    optimizer=opt,
    loss="binary_crossentropy",
    metrics=["accuracy"])

  ds, ds_val = dsm.get_train_fold(
    1, output_type=model_class.input_type)

  evaluate.train(
    model, ds, ds_val, verbose=1,
    label=f"{dsm.name}_{model.name}")
Example #5
0
def kernel_experiment():
  model_class = kernel_models.WL_sp
  model = model_class(C=0.001)
  dsm = synthetic.balanced_triangle_classification_dataset(stored=True)(
    with_holdout=False)

  for i in range(10):
    ds = dsm.get_train_fold(
      i, output_type=model_class.input_type)
    ds_test = dsm.get_test_fold(
      i, output_type=model_class.input_type)
    #ds = dsm.get_all(output_type=model_class.input_type)
    print(i)
    print(evaluate.train(model, ds, ds_test, label=f"{dsm.name}_{model.name}").history)
Example #6
0
def dd_experient():
  model_class = gnn_models.AvgWL2GCN
  dsm = eval_ds.DD_2()

  model = model_class(
    act="sigmoid", squeeze_output=True,
    layer_dims=[dsm.dim_wl2_features(), 64, 64, 64, 1],
    bias=True)

  opt = keras.optimizers.Adam(0.00001)

  model.compile(
    optimizer=opt,
    loss="binary_crossentropy",
    metrics=["accuracy"])

  ds_raw = dsm.get_all(
    output_type=model_class.input_type)
  ds = ds_raw

  evaluate.train(
    model, ds, verbose=1,
    label=f"{dsm.name}_{model.name}")
  print(model.evaluate(ds))