def transt_loss(settings): num_classes = 1 matcher = build_matcher() weight_dict = {'loss_ce': 8.334, 'loss_bbox': 5} weight_dict['loss_giou'] = 2 losses = ['labels', 'boxes'] criterion = SetCriterion(num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=0.0625, losses=losses) device = torch.device(settings.device) criterion.to(device) return criterion
def transt_loss(settings): num_classes = 1 matcher = build_matcher() weight_dict = {'loss_ce': 8.334, 'loss_bbox': 5} weight_dict['loss_giou'] = 2 weight_dict['loss_giou_circuit'] = 0 losses = ['labels', 'boxes'] criterion = SetCriterion(num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=0.0625, losses=losses) device = torch.device(settings.device) criterion.to(device) return criterion print([ n for n, p in model.named_parameters() if "exc" in n or "circuit" in n or "mix" in n or "new" in n or "rnn" in n ])