def _run_experiment(self, hyperopt_dict: dict) -> TrialResults: parameters = hyperopt_dict["parameters"] train_stats, eval_stats = run_experiment(**hyperopt_dict) metric_score = self.get_metric_score(train_stats, eval_stats) return TrialResults( parameters=parameters, metric_score=metric_score, training_stats=train_stats, eval_stats=eval_stats, )
def _run_experiment_gpu(self, hyperopt_dict: dict) -> TrialResults: gpu_id_meta = self.queue.get() try: parameters = hyperopt_dict['parameters'] hyperopt_dict["gpus"] = gpu_id_meta["gpu_id"] hyperopt_dict["gpu_memory_limit"] = gpu_id_meta["gpu_memory_limit"] train_stats, eval_stats = run_experiment(**hyperopt_dict) metric_score = self.get_metric_score(train_stats, eval_stats) finally: self.queue.put(gpu_id_meta) return TrialResults( parameters=parameters, metric_score=metric_score, training_stats=train_stats, eval_stats=eval_stats, )
def execute( self, config, dataset=None, training_set=None, validation_set=None, test_set=None, training_set_metadata=None, data_format=None, experiment_name="hyperopt", model_name="run", # model_load_path=None, # model_resume_path=None, skip_save_training_description=False, skip_save_training_statistics=False, skip_save_model=False, skip_save_progress=False, skip_save_log=False, skip_save_processed_input=True, skip_save_unprocessed_output=False, skip_save_predictions=False, skip_save_eval_stats=False, output_directory="results", gpus=None, gpu_memory_limit=None, allow_parallel_threads=True, callbacks=None, backend=None, random_seed=default_random_seed, debug=False, **kwargs, ) -> RayTuneResults: if isinstance(dataset, str) and not has_remote_protocol(dataset) and not os.path.isabs(dataset): dataset = os.path.abspath(dataset) if isinstance(backend, str): backend = initialize_backend(backend) if gpus is not None: raise ValueError( "Parameter `gpus` is not supported when using Ray Tune. " "Configure GPU resources with Ray and set `gpu_resources_per_trial` in your " "hyperopt config." ) if gpu_memory_limit is None and 0 < self._gpu_resources_per_trial_non_none < 1: # Enforce fractional GPU utilization gpu_memory_limit = self.gpu_resources_per_trial hyperopt_dict = dict( config=config, dataset=dataset, training_set=training_set, validation_set=validation_set, test_set=test_set, training_set_metadata=training_set_metadata, data_format=data_format, experiment_name=experiment_name, model_name=model_name, # model_load_path=model_load_path, # model_resume_path=model_resume_path, eval_split=self.split, skip_save_training_description=skip_save_training_description, skip_save_training_statistics=skip_save_training_statistics, skip_save_model=skip_save_model, skip_save_progress=skip_save_progress, skip_save_log=skip_save_log, skip_save_processed_input=skip_save_processed_input, skip_save_unprocessed_output=skip_save_unprocessed_output, skip_save_predictions=skip_save_predictions, skip_save_eval_stats=skip_save_eval_stats, output_directory=output_directory, gpus=gpus, gpu_memory_limit=gpu_memory_limit, allow_parallel_threads=allow_parallel_threads, callbacks=callbacks, backend=backend, random_seed=random_seed, debug=debug, ) mode = "min" if self.goal != MAXIMIZE else "max" metric = "metric_score" if self.search_alg_dict is not None: if TYPE not in self.search_alg_dict: logger.warning("WARNING: Kindly set type param for search_alg " "to utilize Tune's Search Algorithms.") search_alg = None else: search_alg_type = self.search_alg_dict[TYPE] search_alg = tune.create_searcher(search_alg_type, metric=metric, mode=mode, **self.search_alg_dict) else: search_alg = None if self.max_concurrent_trials: assert ( self.max_concurrent_trials > 0 ), f"`max_concurrent_trials` must be greater than 0, got {self.max_concurrent_trials}" if isinstance(search_alg, BasicVariantGenerator) or search_alg is None: search_alg = BasicVariantGenerator(max_concurrent=self.max_concurrent_trials) elif isinstance(search_alg, ConcurrencyLimiter): raise ValueError( "You have specified `max_concurrent_trials`, but the search " "algorithm is already a `ConcurrencyLimiter`. FIX THIS " "by setting `max_concurrent_trials=None`." ) else: search_alg = ConcurrencyLimiter(search_alg, max_concurrent=self.max_concurrent_trials) resources_per_trial = { "cpu": self._cpu_resources_per_trial_non_none, "gpu": self._gpu_resources_per_trial_non_none, } def run_experiment_trial(config, local_hyperopt_dict, checkpoint_dir=None): return self._run_experiment( config, checkpoint_dir, local_hyperopt_dict, self.decode_ctx, _is_ray_backend(backend) ) tune_config = {} tune_callbacks = [] for callback in callbacks or []: run_experiment_trial, tune_config = callback.prepare_ray_tune( run_experiment_trial, tune_config, tune_callbacks, ) if _is_ray_backend(backend): # we can't set Trial actor's CPUs to 0 so we just go very low resources_per_trial = PlacementGroupFactory( [{"CPU": 0.001}] + ([{"CPU": 1, "GPU": 1}] * self._gpu_resources_per_trial_non_none) if self._gpu_resources_per_trial_non_none else [{"CPU": 0.001}] + [{"CPU": 1}] * self._cpu_resources_per_trial_non_none ) if has_remote_protocol(output_directory): run_experiment_trial = tune.durable(run_experiment_trial) self.sync_config = tune.SyncConfig(sync_to_driver=False, upload_dir=output_directory) output_directory = None elif self.kubernetes_namespace: from ray.tune.integration.kubernetes import NamespacedKubernetesSyncer self.sync_config = tune.SyncConfig(sync_to_driver=NamespacedKubernetesSyncer(self.kubernetes_namespace)) run_experiment_trial_params = tune.with_parameters(run_experiment_trial, local_hyperopt_dict=hyperopt_dict) register_trainable(f"trainable_func_f{hash_dict(config).decode('ascii')}", run_experiment_trial_params) analysis = tune.run( f"trainable_func_f{hash_dict(config).decode('ascii')}", config={ **self.search_space, **tune_config, }, scheduler=self.scheduler, search_alg=search_alg, num_samples=self.num_samples, keep_checkpoints_num=1, max_failures=1, # retry a trial failure once resources_per_trial=resources_per_trial, time_budget_s=self.time_budget_s, sync_config=self.sync_config, local_dir=output_directory, metric=metric, mode=mode, trial_name_creator=lambda trial: f"trial_{trial.trial_id}", trial_dirname_creator=lambda trial: f"trial_{trial.trial_id}", callbacks=tune_callbacks, ) if "metric_score" in analysis.results_df.columns: ordered_trials = analysis.results_df.sort_values("metric_score", ascending=self.goal != MAXIMIZE) # Catch nans in edge case where the trial doesn't complete temp_ordered_trials = [] for kwargs in ordered_trials.to_dict(orient="records"): for key in ["parameters", "training_stats", "eval_stats"]: if isinstance(kwargs[key], float): kwargs[key] = {} temp_ordered_trials.append(kwargs) # Trials w/empty eval_stats fields & non-empty training_stats fields ran intermediate # tune.report call(s) but were terminated before reporting eval_stats from post-train # evaluation (e.g., trial stopped due to time budget or relatively poor performance.) # For any such trials, run model evaluation for the best model in that trial & record # results in ordered_trials which is returned & is persisted in hyperopt_statistics.json. for trial in temp_ordered_trials: if trial["eval_stats"] == "{}" and trial["training_stats"] != "{}": # Evaluate the best model on the eval_split, which is validation_set if validation_set is not None and validation_set.size > 0: trial_path = trial["trial_dir"] best_model_path = self._get_best_model_path(trial_path, analysis) if best_model_path is not None: self._evaluate_best_model( trial, trial_path, best_model_path, validation_set, data_format, skip_save_unprocessed_output, skip_save_predictions, skip_save_eval_stats, gpus, gpu_memory_limit, allow_parallel_threads, backend, debug, ) else: logger.warning("Skipping evaluation as no model checkpoints were available") else: logger.warning("Skipping evaluation as no validation set was provided") ordered_trials = [TrialResults.from_dict(load_json_values(kwargs)) for kwargs in temp_ordered_trials] else: logger.warning("No trials reported results; check if time budget lower than epoch latency") ordered_trials = [] return RayTuneResults(ordered_trials=ordered_trials, experiment_analysis=analysis)
def execute( self, config, dataset=None, training_set=None, validation_set=None, test_set=None, training_set_metadata=None, data_format=None, experiment_name="hyperopt", model_name="run", # model_load_path=None, # model_resume_path=None, skip_save_training_description=False, skip_save_training_statistics=False, skip_save_model=False, skip_save_progress=False, skip_save_log=False, skip_save_processed_input=True, skip_save_unprocessed_output=False, skip_save_predictions=False, skip_save_eval_stats=False, output_directory="results", gpus=None, gpu_memory_limit=None, allow_parallel_threads=True, callbacks=None, backend=None, random_seed=default_random_seed, debug=False, **kwargs, ) -> HyperoptResults: trial_results = [] trials = 0 while not self.hyperopt_sampler.finished(): sampled_parameters = self.hyperopt_sampler.sample_batch() metric_scores = [] for i, parameters in enumerate(sampled_parameters): modified_config = substitute_parameters(copy.deepcopy(config), parameters) trial_id = trials + i model = LudwigModel( config=modified_config, backend=backend, gpus=gpus, gpu_memory_limit=gpu_memory_limit, allow_parallel_threads=allow_parallel_threads, callbacks=callbacks, ) eval_stats, train_stats, _, _ = model.experiment( dataset=dataset, training_set=training_set, validation_set=validation_set, test_set=test_set, training_set_metadata=training_set_metadata, data_format=data_format, experiment_name=f"{experiment_name}_{trial_id}", model_name=model_name, # model_load_path=model_load_path, # model_resume_path=model_resume_path, eval_split=self.split, skip_save_training_description=skip_save_training_description, skip_save_training_statistics=skip_save_training_statistics, skip_save_model=skip_save_model, skip_save_progress=skip_save_progress, skip_save_log=skip_save_log, skip_save_processed_input=skip_save_processed_input, skip_save_unprocessed_output=skip_save_unprocessed_output, skip_save_predictions=skip_save_predictions, skip_save_eval_stats=skip_save_eval_stats, output_directory=output_directory, skip_collect_predictions=True, skip_collect_overall_stats=False, random_seed=random_seed, debug=debug, ) metric_score = self.get_metric_score(train_stats) metric_scores.append(metric_score) trial_results.append( TrialResults( parameters=parameters, metric_score=metric_score, training_stats=train_stats, eval_stats=eval_stats, ) ) trials += len(sampled_parameters) self.hyperopt_sampler.update_batch(zip(sampled_parameters, metric_scores)) ordered_trials = self.sort_hyperopt_results(trial_results) return HyperoptResults(ordered_trials=ordered_trials)
def execute( self, config, dataset=None, training_set=None, validation_set=None, test_set=None, training_set_metadata=None, data_format=None, experiment_name="hyperopt", model_name="run", # model_load_path=None, # model_resume_path=None, skip_save_training_description=False, skip_save_training_statistics=False, skip_save_model=False, skip_save_progress=False, skip_save_log=False, skip_save_processed_input=True, skip_save_unprocessed_output=False, skip_save_predictions=False, skip_save_eval_stats=False, output_directory="results", gpus=None, gpu_memory_limit=None, allow_parallel_threads=True, backend=None, random_seed=default_random_seed, debug=False, **kwargs) -> RayTuneResults: if isinstance(dataset, str) and not os.path.isabs(dataset): dataset = os.path.abspath(dataset) if gpus is not None: raise ValueError( "Parameter `gpus` is not supported when using Ray Tune. " "Configure GPU resources with Ray and set `gpu_resources_per_trial` in your " "hyperopt config.") hyperopt_dict = dict( config=config, dataset=dataset, training_set=training_set, validation_set=validation_set, test_set=test_set, training_set_metadata=training_set_metadata, data_format=data_format, experiment_name=experiment_name, model_name=model_name, # model_load_path=model_load_path, # model_resume_path=model_resume_path, eval_split=self.split, skip_save_training_description=skip_save_training_description, skip_save_training_statistics=skip_save_training_statistics, skip_save_model=skip_save_model, skip_save_progress=skip_save_progress, skip_save_log=skip_save_log, skip_save_processed_input=skip_save_processed_input, skip_save_unprocessed_output=skip_save_unprocessed_output, skip_save_predictions=skip_save_predictions, skip_save_eval_stats=skip_save_eval_stats, output_directory=output_directory, gpus=gpus, gpu_memory_limit=gpu_memory_limit, allow_parallel_threads=allow_parallel_threads, backend=backend, random_seed=random_seed, debug=debug, ) mode = "min" if self.goal != MAXIMIZE else "max" metric = "metric_score" if self.search_alg_dict is not None: if TYPE not in self.search_alg_dict: logger.warning("WARNING: Kindly set type param for search_alg " "to utilize Tune's Search Algorithms.") search_alg = None else: search_alg_type = self.search_alg_dict.pop(TYPE) search_alg = tune.create_searcher(search_alg_type, metric=metric, mode=mode, **self.search_alg_dict) else: search_alg = None sync_config = None if self.kubernetes_namespace: from ray.tune.integration.kubernetes import NamespacedKubernetesSyncer sync_config = tune.SyncConfig( sync_to_driver=NamespacedKubernetesSyncer( self.kubernetes_namespace)) resources_per_trial = { "cpu": self.cpu_resources_per_trial or 1, "gpu": self.gpu_resources_per_trial or 0, } def run_experiment_trial(config, checkpoint_dir=None): return self._run_experiment(config, checkpoint_dir, hyperopt_dict, self.decode_ctx) register_trainable(f"trainable_func_f{hash_dict(config)}", run_experiment_trial) analysis = tune.run( f"trainable_func_f{hash_dict(config)}", config=self.search_space, scheduler=self.scheduler, search_alg=search_alg, num_samples=self.num_samples, resources_per_trial=resources_per_trial, queue_trials=True, sync_config=sync_config, local_dir=output_directory, metric=metric, mode=mode, trial_name_creator=lambda trial: f"trial_{trial.trial_id}", trial_dirname_creator=lambda trial: f"trial_{trial.trial_id}", ) ordered_trials = analysis.results_df.sort_values( "metric_score", ascending=self.goal != MAXIMIZE) ordered_trials = [ TrialResults.from_dict(load_json_values(kwargs)) for kwargs in ordered_trials.to_dict(orient="records") ] return RayTuneResults(ordered_trials=ordered_trials, experiment_analysis=analysis)
def execute( self, config, dataset=None, training_set=None, validation_set=None, test_set=None, training_set_metadata=None, data_format=None, experiment_name="hyperopt", model_name="run", # model_load_path=None, # model_resume_path=None, skip_save_training_description=False, skip_save_training_statistics=False, skip_save_model=False, skip_save_progress=False, skip_save_log=False, skip_save_processed_input=True, skip_save_unprocessed_output=False, skip_save_predictions=False, skip_save_eval_stats=False, output_directory="results", gpus=None, gpu_memory_limit=None, allow_parallel_threads=True, backend=None, random_seed=default_random_seed, debug=False, **kwargs) -> HyperoptResults: experiment_kwargs = dict( dataset=dataset, training_set=training_set, validation_set=validation_set, test_set=test_set, training_set_metadata=training_set_metadata, data_format=data_format, model_name=model_name, # model_load_path=model_load_path, # model_resume_path=model_resume_path, eval_split=self.split, skip_save_training_description=skip_save_training_description, skip_save_training_statistics=skip_save_training_statistics, skip_save_model=skip_save_model, skip_save_progress=skip_save_progress, skip_save_log=skip_save_log, skip_save_processed_input=skip_save_processed_input, skip_save_unprocessed_output=skip_save_unprocessed_output, skip_save_predictions=skip_save_predictions, skip_save_eval_stats=skip_save_eval_stats, output_directory=output_directory, gpus=gpus, gpu_memory_limit=gpu_memory_limit, allow_parallel_threads=allow_parallel_threads, backend=backend, random_seed=random_seed, debug=debug, ) experiemnt_fn = _run_experiment_unary if self.resource_limits: experiemnt_fn = self.fiber_meta( **self.resource_limits)(experiemnt_fn) trial_results = [] trials = 0 while not self.hyperopt_sampler.finished(): sampled_parameters = self.hyperopt_sampler.sample_batch() metric_scores = [] stats_batch = self.pool.map( experiemnt_fn, [{ 'config': substitute_parameters(copy.deepcopy(config), parameters), 'experiment_name': f'{experiment_name}_{trials + i}', **experiment_kwargs } for i, parameters in enumerate(sampled_parameters)], ) trials += len(sampled_parameters) for stats, parameters in zip(stats_batch, sampled_parameters): train_stats, eval_stats = stats metric_score = self.get_metric_score(train_stats, eval_stats) metric_scores.append(metric_score) trial_results.append( TrialResults( parameters=parameters, metric_score=metric_score, training_stats=train_stats, eval_stats=eval_stats, )) self.hyperopt_sampler.update_batch( zip(sampled_parameters, metric_scores)) ordered_trials = self.sort_hyperopt_results(trial_results) return HyperoptResults(ordered_trials=ordered_trials)
def execute( self, config, dataset=None, training_set=None, validation_set=None, test_set=None, training_set_metadata=None, data_format=None, experiment_name="hyperopt", model_name="run", resume=None, skip_save_training_description=False, skip_save_training_statistics=False, skip_save_model=False, skip_save_progress=False, skip_save_log=False, skip_save_processed_input=True, skip_save_unprocessed_output=False, skip_save_predictions=False, skip_save_eval_stats=False, output_directory="results", gpus=None, gpu_memory_limit=None, allow_parallel_threads=True, callbacks=None, backend=None, random_seed=default_random_seed, debug=False, hyperopt_log_verbosity=3, features_eligible_for_shared_params=None, **kwargs, ) -> RayTuneResults: if isinstance(dataset, str) and not has_remote_protocol( dataset) and not os.path.isabs(dataset): dataset = os.path.abspath(dataset) if isinstance(backend, str): backend = initialize_backend(backend) if gpus is not None: raise ValueError( "Parameter `gpus` is not supported when using Ray Tune. " "Configure GPU resources with Ray and set `gpu_resources_per_trial` in your " "hyperopt config.") if gpu_memory_limit is None and 0 < self._gpu_resources_per_trial_non_none < 1: # Enforce fractional GPU utilization gpu_memory_limit = self.gpu_resources_per_trial hyperopt_dict = dict( config=config, dataset=dataset, training_set=training_set, validation_set=validation_set, test_set=test_set, training_set_metadata=training_set_metadata, data_format=data_format, experiment_name=experiment_name, model_name=model_name, eval_split=self.split, skip_save_training_description=skip_save_training_description, skip_save_training_statistics=skip_save_training_statistics, skip_save_model=skip_save_model, skip_save_progress=skip_save_progress, skip_save_log=skip_save_log, skip_save_processed_input=skip_save_processed_input, skip_save_unprocessed_output=skip_save_unprocessed_output, skip_save_predictions=skip_save_predictions, skip_save_eval_stats=skip_save_eval_stats, output_directory=output_directory, gpus=gpus, gpu_memory_limit=gpu_memory_limit, allow_parallel_threads=allow_parallel_threads, callbacks=callbacks, backend=backend, random_seed=random_seed, debug=debug, ) mode = "min" if self.goal != MAXIMIZE else "max" metric = "metric_score" # if random seed not set, use Ludwig seed self.search_algorithm.check_for_random_seed(random_seed) if self.search_algorithm.search_alg_dict is not None: if TYPE not in self.search_algorithm.search_alg_dict: candiate_search_algs = [ search_alg for search_alg in SEARCH_ALG_IMPORT.keys() ] logger.warning( "WARNING: search_alg type parameter missing, using 'variant_generator' as default. " f"These are possible values for the type parameter: {candiate_search_algs}." ) search_alg = None else: search_alg_type = self.search_algorithm.search_alg_dict[TYPE] search_alg = tune.create_searcher( search_alg_type, metric=metric, mode=mode, **self.search_algorithm.search_alg_dict) else: search_alg = None if self.max_concurrent_trials: assert ( self.max_concurrent_trials > 0 ), f"`max_concurrent_trials` must be greater than 0, got {self.max_concurrent_trials}" if isinstance(search_alg, BasicVariantGenerator) or search_alg is None: search_alg = BasicVariantGenerator( max_concurrent=self.max_concurrent_trials) elif isinstance(search_alg, ConcurrencyLimiter): raise ValueError( "You have specified `max_concurrent_trials`, but the search " "algorithm is already a `ConcurrencyLimiter`. FIX THIS " "by setting `max_concurrent_trials=None`.") else: search_alg = ConcurrencyLimiter( search_alg, max_concurrent=self.max_concurrent_trials) resources_per_trial = { "cpu": self._cpu_resources_per_trial_non_none, "gpu": self._gpu_resources_per_trial_non_none, } def run_experiment_trial(config, local_hyperopt_dict, checkpoint_dir=None): return self._run_experiment( config, checkpoint_dir, local_hyperopt_dict, self.decode_ctx, features_eligible_for_shared_params, _is_ray_backend(backend), ) tune_config = {} tune_callbacks = [] for callback in callbacks or []: run_experiment_trial, tune_config = callback.prepare_ray_tune( run_experiment_trial, tune_config, tune_callbacks, ) if _is_ray_backend(backend): # for now, we do not do distributed training on cpu (until spread scheduling is implemented for Ray Train) # but we do want to enable it when GPUs are specified resources_per_trial = PlacementGroupFactory( [{}] + ([{ "CPU": 0, "GPU": 1 }] * self._gpu_resources_per_trial_non_none) if self. _gpu_resources_per_trial_non_none else [{}] + [{ "CPU": self._cpu_resources_per_trial_non_none }]) if has_remote_protocol(output_directory): run_experiment_trial = tune.durable(run_experiment_trial) self.sync_config = tune.SyncConfig(sync_to_driver=False, upload_dir=output_directory) if _ray_114: self.sync_client = get_node_to_storage_syncer( SyncConfig(upload_dir=output_directory)) else: self.sync_client = get_cloud_sync_client(output_directory) output_directory = None elif self.kubernetes_namespace: from ray.tune.integration.kubernetes import KubernetesSyncClient, NamespacedKubernetesSyncer self.sync_config = tune.SyncConfig( sync_to_driver=NamespacedKubernetesSyncer( self.kubernetes_namespace)) self.sync_client = KubernetesSyncClient(self.kubernetes_namespace) run_experiment_trial_params = tune.with_parameters( run_experiment_trial, local_hyperopt_dict=hyperopt_dict) register_trainable( f"trainable_func_f{hash_dict(config).decode('ascii')}", run_experiment_trial_params) # Note that resume="AUTO" will attempt to resume the experiment if possible, and # otherwise will start a new experiment: # https://docs.ray.io/en/latest/tune/tutorials/tune-stopping.html should_resume = "AUTO" if resume is None else resume try: analysis = tune.run( f"trainable_func_f{hash_dict(config).decode('ascii')}", name=experiment_name, config={ **self.search_space, **tune_config, }, scheduler=self.scheduler, search_alg=search_alg, num_samples=self.num_samples, keep_checkpoints_num=1, max_failures=1, # retry a trial failure once resources_per_trial=resources_per_trial, time_budget_s=self.time_budget_s, sync_config=self.sync_config, local_dir=output_directory, metric=metric, mode=mode, trial_name_creator=lambda trial: f"trial_{trial.trial_id}", trial_dirname_creator=lambda trial: f"trial_{trial.trial_id}", callbacks=tune_callbacks, stop=CallbackStopper(callbacks), verbose=hyperopt_log_verbosity, resume=should_resume, log_to_file=True, ) except Exception as e: # Explicitly raise a RuntimeError if an error is encountered during a Ray trial. # NOTE: Cascading the exception with "raise _ from e" still results in hanging. raise RuntimeError(f"Encountered Ray Tune error: {e}") if "metric_score" in analysis.results_df.columns: ordered_trials = analysis.results_df.sort_values( "metric_score", ascending=self.goal != MAXIMIZE) # Catch nans in edge case where the trial doesn't complete temp_ordered_trials = [] for kwargs in ordered_trials.to_dict(orient="records"): for key in ["parameters", "training_stats", "eval_stats"]: if isinstance(kwargs[key], float): kwargs[key] = {} temp_ordered_trials.append(kwargs) # Trials w/empty eval_stats fields & non-empty training_stats fields ran intermediate # tune.report call(s) but were terminated before reporting eval_stats from post-train # evaluation (e.g., trial stopped due to time budget or relatively poor performance.) # For any such trials, run model evaluation for the best model in that trial & record # results in ordered_trials which is returned & is persisted in hyperopt_statistics.json. for trial in temp_ordered_trials: if trial["eval_stats"] == "{}" and trial[ "training_stats"] != "{}": # Evaluate the best model on the eval_split, which is validation_set if validation_set is not None and validation_set.size > 0: trial_path = trial["trial_dir"] best_model_path = self._get_best_model_path( trial_path, analysis) if best_model_path is not None: self._evaluate_best_model( trial, trial_path, best_model_path, validation_set, data_format, skip_save_unprocessed_output, skip_save_predictions, skip_save_eval_stats, gpus, gpu_memory_limit, allow_parallel_threads, backend, debug, ) else: logger.warning( "Skipping evaluation as no model checkpoints were available" ) else: logger.warning( "Skipping evaluation as no validation set was provided" ) ordered_trials = [ TrialResults.from_dict(load_json_values(kwargs)) for kwargs in temp_ordered_trials ] else: logger.warning( "No trials reported results; check if time budget lower than epoch latency" ) ordered_trials = [] return RayTuneResults(ordered_trials=ordered_trials, experiment_analysis=analysis)