def _setup_loss(self): self.train_loss_function = BWCEWLoss( positive_class_weight=self.loss["positive_class_weight"], robust_lambda=self.loss["robust_lambda"], confidence_penalty=self.loss["confidence_penalty"], ) self.eval_loss_function = self.train_loss_function
def _setup_loss(self): self.train_loss_function = BWCEWLoss( positive_class_weight=self.loss['positive_class_weight'], robust_lambda=self.loss['robust_lambda'], confidence_penalty=self.loss['confidence_penalty'] ) self.eval_loss_function = self.train_loss_function
def __init__(self, positive_class_weight=1, robust_lambda=0, confidence_penalty=0, name='binary_cross_entropy_weighted_loss_metric'): super(BWCEWLMetric, self).__init__(name=name) self.bwcew_loss_function = BWCEWLoss( positive_class_weight=positive_class_weight, robust_lambda=robust_lambda, confidence_penalty=confidence_penalty) self._reset_states()
def __init__( self, positive_class_weight: Optional[Tensor] = None, robust_lambda: int = 0, confidence_penalty: int = 0, **kwargs, ): super().__init__() self.loss_function = BWCEWLoss( positive_class_weight=positive_class_weight, robust_lambda=robust_lambda, confidence_penalty=confidence_penalty, )
def __init__(self, positive_class_weight=1, robust_lambda=0, confidence_penalty=0, name='binary_cross_entropy_weighted_loss_metric'): super(BWCEWLMetric, self).__init__(name=name) self.bwcew_loss_function = BWCEWLoss( positive_class_weight=positive_class_weight, robust_lambda=robust_lambda, confidence_penalty=confidence_penalty) self.sum_loss = self.add_weight('sum_loss', initializer='zeros', dtype=tf.float32) self.N = self.add_weight('N', initializer='zeros', dtype=tf.float32)
def __init__( self, positive_class_weight=1, robust_lambda=0, confidence_penalty=0, name="binary_cross_entropy_weighted_loss_metric", ): super().__init__(name=name) self.bwcew_loss_function = BWCEWLoss( positive_class_weight=positive_class_weight, robust_lambda=robust_lambda, confidence_penalty=confidence_penalty, ) self.sum_loss = self.add_weight("sum_loss", initializer="zeros", dtype=tf.float32) self.N = self.add_weight("N", initializer="zeros", dtype=tf.float32)