def startjob( csv_file_path=r'C:\Users\57855\Desktop\2%test.csv', #训练文件的路径 model_file=r'C:\Users\57855\Desktop\2%.yaml', #模型配置文件路径 test_file=r'C:\Users\57855\Desktop\2%test_data.csv'): #结果输出路径 #Lugwig教程上的代码 with open(model_file, encoding='utf-8', mode='r') as file: model_definition = yaml.load(file.read()) print(model_definition) ludwig_model = LudwigModel(model_definition) train_stats = ludwig_model.train(csv_file_path, logging_level=logging_DEBUG) print(train_stats) predictions = ludwig_model.predict(test_file, logging_level=logging_DEBUG) print(predictions) ludwig_model.close()
'name': 'oldpeak', 'type': 'numerical', 'encoder': 'rnn' }, { 'name': 'slope', 'type': 'category', 'encoder': 'rnn' }, { 'name': 'ca', 'type': 'category', 'encoder': 'rnn' }, { 'name': 'thal', 'type': 'category', 'encoder': 'rnn' }], 'output_features': [{ 'name': 'target', 'type': 'binary' }], 'training': { 'epochs': 10 } } model = LudwigModel(model_definition) train_stats = model.train(data) # obtain predictions predictions = model.predict(data) model.close()
}, { 'name': 'pe', 'type': 'category' }, { 'name': 'ane', 'type': 'category' }, ], 'output_features': [{ 'name': 'classification', 'type': 'binary' }] } print('creating model') model = LudwigModel(model_definition) print('training model') train_stats = model.train(data_df=train_df) #Run predictions predictions = model.predict(data_df=X_test) predictions["classification_predictions"] = np.where( predictions.iloc[:, 0] == True, 1, 0) print(accuracy_score(Y_test, predictions.iloc[:, 0])) print(confusion_matrix(Y_test, predictions.iloc[:, 0])) print(classification_report(Y_test, predictions.iloc[:, 0])) model.close()