def __init__(self, lvis_gt, lvis_dt=None, img_dir=None, dpi=75):
        """Constructor for LVISVis.
        Args:
            lvis_gt (LVIS class instance, or str containing path of annotation file)
            lvis_dt (LVISResult class instance, or str containing path of result file,
            or list of dict)
            img_dir (str): path of folder containing all images. If None, the image
            to be displayed will be downloaded to the current working dir.
            dpi (int): dpi for figure size setup
        """
        self.logger = logging.getLogger(__name__)

        if isinstance(lvis_gt, LVIS):
            self.lvis_gt = lvis_gt
        elif isinstance(lvis_gt, str):
            self.lvis_gt = LVIS(lvis_gt)
        else:
            raise TypeError("Unsupported type {} of lvis_gt.".format(lvis_gt))

        if lvis_dt is not None:
            if isinstance(lvis_dt, LVISResults):
                self.lvis_dt = lvis_dt
            elif isinstance(lvis_dt, (str, list)):
                self.lvis_dt = LVISResults(self.lvis_gt, lvis_dt)
            else:
                raise TypeError("Unsupported type {} of lvis_dt.".format(lvis_dt))
        else:
            self.lvis_dt = None
        self.dpi = dpi
        self.img_dir = img_dir if img_dir else '.'
        if self.img_dir == '.':
            self.logger.warn("img_dir not specified. Images will be downloaded.")
Example #2
0
    def __init__(self, lvis_gt, lvis_dt, iou_type="segm"):
        """Constructor for LVISEval.
        Args:
            lvis_gt (LVIS class instance,
                or str containing path of annotation file)
            lvis_dt (LVISResult class instance,
                or str containing path of result file,
            or list of dict)
            iou_type (str): segm or bbox evaluation
        """
        self.logger = logging.getLogger(__name__)

        if iou_type not in ["bbox", "segm"]:
            raise ValueError("iou_type: {} is not supported.".format(iou_type))

        if isinstance(lvis_gt, LVIS):
            self.lvis_gt = lvis_gt
        elif isinstance(lvis_gt, str):
            self.lvis_gt = LVIS(lvis_gt)
        else:
            raise TypeError("Unsupported type {} of lvis_gt.".format(lvis_gt))

        if isinstance(lvis_dt, LVISResults):
            self.lvis_dt = lvis_dt
        elif isinstance(lvis_dt, (str, list)):
            self.lvis_dt = LVISResults(self.lvis_gt, lvis_dt)
        else:
            raise TypeError("Unsupported type {} of lvis_dt.".format(lvis_dt))

        # per-image per-category evaluation results
        self.eval_imgs = defaultdict(list)
        self.eval = {}  # accumulated evaluation results
        self._gts = defaultdict(list)  # gt for evaluation
        self._dts = defaultdict(list)  # dt for evaluation
        self.params = Params(iou_type=iou_type)  # parameters
        self.results = OrderedDict()
        self.ious = {}  # ious between all gts and dts

        self.params.img_ids = sorted(self.lvis_gt.get_img_ids())
        self.params.cat_ids = sorted(self.lvis_gt.get_cat_ids())
Example #3
0
class LVISEval:
    def __init__(self, lvis_gt, lvis_dt, iou_type="segm"):
        """Constructor for LVISEval.
        Args:
            lvis_gt (LVIS class instance, or str containing path of annotation file)
            lvis_dt (LVISResult class instance, or str containing path of result file,
            or list of dict)
            iou_type (str): segm or bbox evaluation
        """
        # self.logger = logging.getLogger(__name__)

        if iou_type not in ["bbox", "segm"]:
            raise ValueError("iou_type: {} is not supported.".format(iou_type))

        if isinstance(lvis_gt, LVIS):
            self.lvis_gt = lvis_gt
        elif isinstance(lvis_gt, str):
            self.lvis_gt = LVIS(lvis_gt)
        else:
            raise TypeError("Unsupported type {} of lvis_gt.".format(lvis_gt))

        if isinstance(lvis_dt, LVISResults):
            self.lvis_dt = lvis_dt
        elif isinstance(lvis_dt, (str, list)):
            self.lvis_dt = LVISResults(self.lvis_gt, lvis_dt)
        else:
            raise TypeError("Unsupported type {} of lvis_dt.".format(lvis_dt))

        # per-image per-category evaluation results
        self.eval_imgs = defaultdict(list)
        self.eval = {}  # accumulated evaluation results
        self._gts = defaultdict(list)  # gt for evaluation
        self._dts = defaultdict(list)  # dt for evaluation
        self.params = Params(iou_type=iou_type)  # parameters
        self.results = OrderedDict()
        self.ious = {}  # ious between all gts and dts

        self.params.img_ids = sorted(self.lvis_gt.get_img_ids())
        self.params.cat_ids = sorted(self.lvis_gt.get_cat_ids())

    def _to_mask(self, anns, lvis):
        for ann in anns:
            rle = lvis.ann_to_rle(ann)
            ann["segmentation"] = rle

    def _prepare(self):
        """Prepare self._gts and self._dts for evaluation based on params."""

        cat_ids = self.params.cat_ids if self.params.cat_ids else None

        gts = self.lvis_gt.load_anns(
            self.lvis_gt.get_ann_ids(img_ids=self.params.img_ids,
                                     cat_ids=cat_ids))
        dts = self.lvis_dt.load_anns(
            self.lvis_dt.get_ann_ids(img_ids=self.params.img_ids,
                                     cat_ids=cat_ids))
        # convert ground truth to mask if iou_type == 'segm'
        if self.params.iou_type == "segm":
            self._to_mask(gts, self.lvis_gt)
            self._to_mask(dts, self.lvis_dt)

        # set ignore flag
        for gt in gts:
            if "ignore" not in gt:
                gt["ignore"] = 0

        for gt in gts:
            self._gts[gt["image_id"], gt["category_id"]].append(gt)

        # For federated dataset evaluation we will filter out all dt for an
        # image which belong to categories not present in gt and not present in
        # the negative list for an image. In other words detector is not penalized
        # for categories about which we don't have gt information about their
        # presence or absence in an image.
        img_data = self.lvis_gt.load_imgs(ids=self.params.img_ids)
        # per image map of categories not present in image
        img_nl = {d["id"]: d["neg_category_ids"] for d in img_data}
        # per image list of categories present in image
        img_pl = defaultdict(set)
        for ann in gts:
            img_pl[ann["image_id"]].add(ann["category_id"])
        # per image map of categoires which have missing gt. For these
        # categories we don't penalize the detector for flase positives.
        self.img_nel = {
            d["id"]: d["not_exhaustive_category_ids"]
            for d in img_data
        }

        for dt in dts:
            img_id, cat_id = dt["image_id"], dt["category_id"]
            if cat_id not in img_nl[img_id] and cat_id not in img_pl[img_id]:
                continue
            self._dts[img_id, cat_id].append(dt)

        self.freq_groups = self._prepare_freq_group()

    def _prepare_freq_group(self):
        freq_groups = [[] for _ in self.params.img_count_lbl]
        cat_data = self.lvis_gt.load_cats(self.params.cat_ids)
        for idx, _cat_data in enumerate(cat_data):
            frequency = _cat_data["frequency"]
            freq_groups[self.params.img_count_lbl.index(frequency)].append(idx)
        return freq_groups

    def evaluate(self):
        """
        Run per image evaluation on given images and store results
        (a list of dict) in self.eval_imgs.
        """
        print("Running per image evaluation.")
        print("Evaluate annotation type *{}*".format(self.params.iou_type))

        self.params.img_ids = list(np.unique(self.params.img_ids))

        if self.params.use_cats:
            cat_ids = self.params.cat_ids
        else:
            cat_ids = [-1]

        self._prepare()

        self.ious = {(img_id, cat_id): self.compute_iou(img_id, cat_id)
                     for img_id in self.params.img_ids for cat_id in cat_ids}

        # loop through images, area range, max detection number
        self.eval_imgs = [
            self.evaluate_img(img_id, cat_id, area_rng) for cat_id in cat_ids
            for area_rng in self.params.area_rng
            for img_id in self.params.img_ids
        ]

    def _get_gt_dt(self, img_id, cat_id):
        """Create gt, dt which are list of anns/dets. If use_cats is true
        only anns/dets corresponding to tuple (img_id, cat_id) will be
        used. Else, all anns/dets in image are used and cat_id is not used.
        """
        if self.params.use_cats:
            gt = self._gts[img_id, cat_id]
            dt = self._dts[img_id, cat_id]
        else:
            gt = [
                _ann for _cat_id in self.params.cat_ids
                for _ann in self._gts[img_id, cat_id]
            ]
            dt = [
                _ann for _cat_id in self.params.cat_ids
                for _ann in self._dts[img_id, cat_id]
            ]
        return gt, dt

    def compute_iou(self, img_id, cat_id):
        gt, dt = self._get_gt_dt(img_id, cat_id)

        if len(gt) == 0 and len(dt) == 0:
            return []

        # Sort detections in decreasing order of score.
        idx = np.argsort([-d["score"] for d in dt], kind="mergesort")
        dt = [dt[i] for i in idx]

        iscrowd = [int(False)] * len(gt)

        if self.params.iou_type == "segm":
            ann_type = "segmentation"
        elif self.params.iou_type == "bbox":
            ann_type = "bbox"
        else:
            raise ValueError("Unknown iou_type for iou computation.")
        gt = [g[ann_type] for g in gt]
        dt = [d[ann_type] for d in dt]

        # compute iou between each dt and gt region
        # will return array of shape len(dt), len(gt)
        ious = mask_utils.iou(dt, gt, iscrowd)
        return ious

    def evaluate_img(self, img_id, cat_id, area_rng):
        """Perform evaluation for single category and image."""
        gt, dt = self._get_gt_dt(img_id, cat_id)

        if len(gt) == 0 and len(dt) == 0:
            return None

        # Add another filed _ignore to only consider anns based on area range.
        for g in gt:
            if g["ignore"] or (g["area"] < area_rng[0]
                               or g["area"] > area_rng[1]):
                g["_ignore"] = 1
            else:
                g["_ignore"] = 0

        # Sort gt ignore last
        gt_idx = np.argsort([g["_ignore"] for g in gt], kind="mergesort")
        gt = [gt[i] for i in gt_idx]

        # Sort dt highest score first
        dt_idx = np.argsort([-d["score"] for d in dt], kind="mergesort")
        dt = [dt[i] for i in dt_idx]

        # load computed ious
        ious = (self.ious[img_id, cat_id][:, gt_idx]
                if len(self.ious[img_id, cat_id]) > 0 else self.ious[img_id,
                                                                     cat_id])

        num_thrs = len(self.params.iou_thrs)
        num_gt = len(gt)
        num_dt = len(dt)

        # Array to store the "id" of the matched dt/gt
        gt_m = np.zeros((num_thrs, num_gt))
        dt_m = np.zeros((num_thrs, num_dt))

        gt_ig = np.array([g["_ignore"] for g in gt])
        dt_ig = np.zeros((num_thrs, num_dt))

        for iou_thr_idx, iou_thr in enumerate(self.params.iou_thrs):
            if len(ious) == 0:
                break

            for dt_idx, _dt in enumerate(dt):
                iou = min([iou_thr, 1 - 1e-10])
                # information about best match so far (m=-1 -> unmatched)
                # store the gt_idx which matched for _dt
                m = -1
                for gt_idx, _ in enumerate(gt):
                    # if this gt already matched continue
                    if gt_m[iou_thr_idx, gt_idx] > 0:
                        continue
                    # if _dt matched to reg gt, and on ignore gt, stop
                    if m > -1 and gt_ig[m] == 0 and gt_ig[gt_idx] == 1:
                        break
                    # continue to next gt unless better match made
                    if ious[dt_idx, gt_idx] < iou:
                        continue
                    # if match successful and best so far, store appropriately
                    iou = ious[dt_idx, gt_idx]
                    m = gt_idx

                # No match found for _dt, go to next _dt
                if m == -1:
                    continue

                # if gt to ignore for some reason update dt_ig.
                # Should not be used in evaluation.
                dt_ig[iou_thr_idx, dt_idx] = gt_ig[m]
                # _dt match found, update gt_m, and dt_m with "id"
                dt_m[iou_thr_idx, dt_idx] = gt[m]["id"]
                gt_m[iou_thr_idx, m] = _dt["id"]

        # For LVIS we will ignore any unmatched detection if that category was
        # not exhaustively annotated in gt.
        dt_ig_mask = [
            d["area"] < area_rng[0] or d["area"] > area_rng[1]
            or d["category_id"] in self.img_nel[d["image_id"]] for d in dt
        ]
        dt_ig_mask = np.array(dt_ig_mask).reshape((1, num_dt))  # 1 X num_dt
        dt_ig_mask = np.repeat(dt_ig_mask, num_thrs, 0)  # num_thrs X num_dt
        # Based on dt_ig_mask ignore any unmatched detection by updating dt_ig
        dt_ig = np.logical_or(dt_ig, np.logical_and(dt_m == 0, dt_ig_mask))
        # store results for given image and category
        return {
            "image_id": img_id,
            "category_id": cat_id,
            "area_rng": area_rng,
            "dt_ids": [d["id"] for d in dt],
            "gt_ids": [g["id"] for g in gt],
            "dt_matches": dt_m,
            "gt_matches": gt_m,
            "dt_scores": [d["score"] for d in dt],
            "gt_ignore": gt_ig,
            "dt_ignore": dt_ig,
        }

    def accumulate(self):
        """Accumulate per image evaluation results and store the result in
        self.eval.
        """
        print("Accumulating evaluation results.")

        if not self.eval_imgs:
            print("Please run evaluate first.")

        if self.params.use_cats:
            cat_ids = self.params.cat_ids
        else:
            cat_ids = [-1]

        num_thrs = len(self.params.iou_thrs)
        num_recalls = len(self.params.rec_thrs)
        num_cats = len(cat_ids)
        num_area_rngs = len(self.params.area_rng)
        num_imgs = len(self.params.img_ids)

        # -1 for absent categories
        precision = -np.ones((num_thrs, num_recalls, num_cats, num_area_rngs))
        recall = -np.ones((num_thrs, num_cats, num_area_rngs))

        # Initialize dt_pointers
        dt_pointers = {}
        for cat_idx in range(num_cats):
            dt_pointers[cat_idx] = {}
            for area_idx in range(num_area_rngs):
                dt_pointers[cat_idx][area_idx] = {}

        # Per category evaluation
        for cat_idx in range(num_cats):
            Nk = cat_idx * num_area_rngs * num_imgs
            for area_idx in range(num_area_rngs):
                Na = area_idx * num_imgs
                E = [
                    self.eval_imgs[Nk + Na + img_idx]
                    for img_idx in range(num_imgs)
                ]
                # Remove elements which are None
                E = [e for e in E if not e is None]
                if len(E) == 0:
                    continue

                # Append all scores: shape (N,)
                dt_scores = np.concatenate([e["dt_scores"] for e in E], axis=0)
                dt_ids = np.concatenate([e["dt_ids"] for e in E], axis=0)

                dt_idx = np.argsort(-dt_scores, kind="mergesort")
                dt_scores = dt_scores[dt_idx]
                dt_ids = dt_ids[dt_idx]

                dt_m = np.concatenate([e["dt_matches"] for e in E],
                                      axis=1)[:, dt_idx]
                dt_ig = np.concatenate([e["dt_ignore"] for e in E],
                                       axis=1)[:, dt_idx]

                gt_ig = np.concatenate([e["gt_ignore"] for e in E])
                # num gt anns to consider
                num_gt = np.count_nonzero(gt_ig == 0)

                if num_gt == 0:
                    continue

                tps = np.logical_and(dt_m, np.logical_not(dt_ig))
                fps = np.logical_and(np.logical_not(dt_m),
                                     np.logical_not(dt_ig))

                tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float)
                fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float)

                dt_pointers[cat_idx][area_idx] = {
                    "dt_ids": dt_ids,
                    "tps": tps,
                    "fps": fps,
                }

                for iou_thr_idx, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
                    tp = np.array(tp)
                    fp = np.array(fp)
                    num_tp = len(tp)
                    rc = tp / num_gt
                    if num_tp:
                        recall[iou_thr_idx, cat_idx, area_idx] = rc[-1]
                    else:
                        recall[iou_thr_idx, cat_idx, area_idx] = 0

                    # np.spacing(1) ~= eps
                    pr = tp / (fp + tp + np.spacing(1))
                    pr = pr.tolist()

                    # Replace each precision value with the maximum precision
                    # value to the right of that recall level. This ensures
                    # that the  calculated AP value will be less suspectable
                    # to small variations in the ranking.
                    for i in range(num_tp - 1, 0, -1):
                        if pr[i] > pr[i - 1]:
                            pr[i - 1] = pr[i]

                    rec_thrs_insert_idx = np.searchsorted(rc,
                                                          self.params.rec_thrs,
                                                          side="left")

                    pr_at_recall = [0.0] * num_recalls

                    try:
                        for _idx, pr_idx in enumerate(rec_thrs_insert_idx):
                            pr_at_recall[_idx] = pr[pr_idx]
                    except:
                        pass
                    precision[iou_thr_idx, :, cat_idx,
                              area_idx] = np.array(pr_at_recall)

        self.eval = {
            "params": self.params,
            "counts": [num_thrs, num_recalls, num_cats, num_area_rngs],
            "date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            "precision": precision,
            "recall": recall,
            "dt_pointers": dt_pointers,
        }

    def _summarize(self,
                   summary_type,
                   iou_thr=None,
                   area_rng="all",
                   freq_group_idx=None):
        aidx = [
            idx for idx, _area_rng in enumerate(self.params.area_rng_lbl)
            if _area_rng == area_rng
        ]

        if summary_type == 'ap':
            s = self.eval["precision"]
            if iou_thr is not None:
                tidx = np.where(iou_thr == self.params.iou_thrs)[0]
                s = s[tidx]
            if freq_group_idx is not None:
                s = s[:, :, self.freq_groups[freq_group_idx], aidx]
            else:
                s = s[:, :, :, aidx]
        else:
            s = self.eval["recall"]
            if iou_thr is not None:
                tidx = np.where(iou_thr == self.params.iou_thrs)[0]
                s = s[tidx]
            s = s[:, :, aidx]

        if len(s[s > -1]) == 0:
            mean_s = -1
        else:
            mean_s = np.mean(s[s > -1])
        return mean_s

    def summarize(self):
        """Compute and display summary metrics for evaluation results."""
        if not self.eval:
            raise RuntimeError("Please run accumulate() first.")

        max_dets = self.params.max_dets

        self.results["AP"] = self._summarize('ap')
        self.results["AP50"] = self._summarize('ap', iou_thr=0.50)
        self.results["AP75"] = self._summarize('ap', iou_thr=0.75)
        self.results["APs"] = self._summarize('ap', area_rng="small")
        self.results["APm"] = self._summarize('ap', area_rng="medium")
        self.results["APl"] = self._summarize('ap', area_rng="large")
        self.results["APr"] = self._summarize('ap', freq_group_idx=0)
        self.results["APc"] = self._summarize('ap', freq_group_idx=1)
        self.results["APf"] = self._summarize('ap', freq_group_idx=2)

        key = "AR@{}".format(max_dets)
        self.results[key] = self._summarize('ar')

        for area_rng in ["small", "medium", "large"]:
            key = "AR{}@{}".format(area_rng[0], max_dets)
            self.results[key] = self._summarize('ar', area_rng=area_rng)

    def run(self):
        """Wrapper function which calculates the results."""
        self.evaluate()
        self.accumulate()
        self.summarize()

    def print_results(self):
        template = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} catIds={:>3s}] = {:0.3f}"

        for key, value in self.results.items():
            max_dets = self.params.max_dets
            if "AP" in key:
                title = "Average Precision"
                _type = "(AP)"
            else:
                title = "Average Recall"
                _type = "(AR)"

            if len(key) > 2 and key[2].isdigit():
                iou_thr = (float(key[2:]) / 100)
                iou = "{:0.2f}".format(iou_thr)
            else:
                iou = "{:0.2f}:{:0.2f}".format(self.params.iou_thrs[0],
                                               self.params.iou_thrs[-1])

            if len(key) > 2 and key[2] in ["r", "c", "f"]:
                cat_group_name = key[2]
            else:
                cat_group_name = "all"

            if len(key) > 2 and key[2] in ["s", "m", "l"]:
                area_rng = key[2]
            else:
                area_rng = "all"

            print(
                template.format(title, _type, iou, area_rng, max_dets,
                                cat_group_name, value))

    def get_results(self):
        if not self.results:
            self.logger.warn("results is empty. Call run().")
        return self.results
class LVISVis:
    def __init__(self, lvis_gt, lvis_dt=None, img_dir=None, dpi=75):
        """Constructor for LVISVis.
        Args:
            lvis_gt (LVIS class instance, or str containing path of annotation file)
            lvis_dt (LVISResult class instance, or str containing path of result file,
            or list of dict)
            img_dir (str): path of folder containing all images. If None, the image
            to be displayed will be downloaded to the current working dir.
            dpi (int): dpi for figure size setup
        """
        self.logger = logging.getLogger(__name__)

        if isinstance(lvis_gt, LVIS):
            self.lvis_gt = lvis_gt
        elif isinstance(lvis_gt, str):
            self.lvis_gt = LVIS(lvis_gt)
        else:
            raise TypeError("Unsupported type {} of lvis_gt.".format(lvis_gt))

        if lvis_dt is not None:
            if isinstance(lvis_dt, LVISResults):
                self.lvis_dt = lvis_dt
            elif isinstance(lvis_dt, (str, list)):
                self.lvis_dt = LVISResults(self.lvis_gt, lvis_dt)
            else:
                raise TypeError("Unsupported type {} of lvis_dt.".format(lvis_dt))
        else:
            self.lvis_dt = None
        self.dpi = dpi
        self.img_dir = img_dir if img_dir else '.'
        if self.img_dir == '.':
            self.logger.warn("img_dir not specified. Images will be downloaded.")

    def coco_segm_to_poly(self, _list):
        x = _list[0::2]
        y = _list[1::2]
        points = np.asarray([x, y])
        return np.transpose(points)

    def get_synset(self, idx):
        synset = self.lvis_gt.load_cats(ids=[idx])[0]["synset"]
        text = synset.split(".")
        text = "{}.{}".format(text[0], int(text[-1]))
        return text

    def setup_figure(self, img, title="", dpi=75):
        fig = plt.figure(frameon=False)
        fig.set_size_inches(img.shape[1] / dpi, img.shape[0] / dpi)
        ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0])
        ax.set_title(title)
        ax.axis("off")
        fig.add_axes(ax)
        ax.imshow(img)
        return fig, ax

    def vis_bbox(self, ax, bbox, box_alpha=0.5, edgecolor="g", linestyle="--"):
        # bbox should be of the form x, y, w, h
        ax.add_patch(
            plt.Rectangle(
                (bbox[0], bbox[1]),
                bbox[2],
                bbox[3],
                fill=False,
                edgecolor=edgecolor,
                linewidth=2.5,
                alpha=box_alpha,
                linestyle=linestyle,
            )
        )

    def vis_text(self, ax, bbox, text, color="w"):
        ax.text(
            bbox[0],
            bbox[1] - 2,
            text,
            fontsize=15,
            family="serif",
            bbox=dict(facecolor="none", alpha=0.4, pad=0, edgecolor="none"),
            color=color,
            zorder=10,
        )

    def vis_mask(self, ax, segm, color):
        # segm is numpy array of shape Nx2
        polygon = Polygon(
            segm, fill=True, facecolor=color, edgecolor=color, linewidth=3, alpha=0.5
        )
        ax.add_patch(polygon)

    def get_color(self, idx):
        color_list = colormap(rgb=True) / 255
        return color_list[idx % len(color_list), 0:3]

    def load_img(self, img_id):
        img = self.lvis_gt.load_imgs([img_id])[0]
        img_path = os.path.join(self.img_dir, img["file_name"])
        if not os.path.exists(img_path):
            self.lvis_gt.download(self.img_dir, img_ids=[img_id])
        img = cv2.imread(img_path)
        b, g, r = cv2.split(img)
        return cv2.merge([r, g, b])

    def vis_img(
        self, img_id, show_boxes=False, show_segms=True, show_classes=False,
        cat_ids_to_show=None
    ):
        ann_ids = self.lvis_gt.get_ann_ids(img_ids=[img_id])
        anns = self.lvis_gt.load_anns(ids=ann_ids)
        boxes, segms, classes = [], [], []
        for ann in anns:
            boxes.append(ann["bbox"])
            segms.append(ann["segmentation"])
            classes.append(ann["category_id"])

        if len(boxes) == 0:
            self.logger.warn("No gt anno found for img_id: {}".format(img_id))
            return

        boxes = np.asarray(boxes)
        areas = boxes[:, 2] * boxes[:, 3]
        sorted_inds = np.argsort(-areas)

        fig, ax = self.setup_figure(self.load_img(img_id))

        for idx in sorted_inds:
            if cat_ids_to_show is not None and classes[idx] not in cat_ids_to_show:
                continue
            color = self.get_color(idx)
            if show_boxes:
                self.vis_bbox(ax, boxes[idx], edgecolor=color)
            if show_classes:
                text = self.get_synset(classes[idx])
                self.vis_text(ax, boxes[idx], text)
            if show_segms:
                for segm in segms[idx]:
                    self.vis_mask(ax, self.coco_segm_to_poly(segm), color)

    def vis_result(
        self, img_id, show_boxes=False, show_segms=True, show_classes=False,
        cat_ids_to_show=None, score_thrs=0.0, show_scores=True
    ):
        assert self.lvis_dt is not None, "lvis_dt was not specified."
        anns = self.lvis_dt.get_top_results(img_id, score_thrs)
        boxes, segms, classes, scores = [], [], [], []
        for ann in anns:
            boxes.append(ann["bbox"])
            segms.append(ann["segmentation"])
            classes.append(ann["category_id"])
            scores.append(ann["score"])

        if len(boxes) == 0:
            self.logger.warn("No gt anno found for img_id: {}".format(img_id))
            return

        boxes = np.asarray(boxes)
        areas = boxes[:, 2] * boxes[:, 3]
        sorted_inds = np.argsort(-areas)

        fig, ax = self.setup_figure(self.load_img(img_id))

        for idx in sorted_inds:
            if cat_ids_to_show is not None and classes[idx] not in cat_ids_to_show:
                continue
            color = self.get_color(idx)
            if show_boxes:
                self.vis_bbox(ax, boxes[idx], edgecolor=color)
            if show_classes:
                text = self.get_synset(classes[idx])
                if show_scores:
                    text = "{}: {:.2f}".format(text, scores[idx])
                self.vis_text(ax, boxes[idx], text)
            if show_segms:
                for segm in segms[idx]:
                    self.vis_mask(ax, self.coco_segm_to_poly(segm), color)
Example #5
0
    def __init__(
        self,
        lvis_gt,
        lvis_dt,
        iou_type="bbox",
        expand_pred_label=False,
        oid_hierarchy_path='./datasets/oid/annotations/challenge-2019-label500-hierarchy.json'
    ):
        """Constructor for OIDEval.
        Args:
            lvis_gt (LVIS class instance, or str containing path of annotation file)
            lvis_dt (LVISResult class instance, or str containing path of result file,
            or list of dict)
            iou_type (str): segm or bbox evaluation
        """
        self.logger = logging.getLogger(__name__)

        if iou_type not in ["bbox", "segm"]:
            raise ValueError("iou_type: {} is not supported.".format(iou_type))

        if isinstance(lvis_gt, LVIS):
            self.lvis_gt = lvis_gt
        elif isinstance(lvis_gt, str):
            self.lvis_gt = LVIS(lvis_gt)
        else:
            raise TypeError("Unsupported type {} of lvis_gt.".format(lvis_gt))

        if isinstance(lvis_dt, LVISResults):
            self.lvis_dt = lvis_dt
        elif isinstance(lvis_dt, (str, list)):
            self.lvis_dt = LVISResults(self.lvis_gt, lvis_dt, max_dets=-1)
        else:
            raise TypeError("Unsupported type {} of lvis_dt.".format(lvis_dt))

        if expand_pred_label:
            oid_hierarchy = json.load(open(oid_hierarchy_path, 'r'))
            cat_info = self.lvis_gt.dataset['categories']
            freebase2id = {x['freebase_id']: x['id'] for x in cat_info}
            id2freebase = {x['id']: x['freebase_id'] for x in cat_info}
            id2name = {x['id']: x['name'] for x in cat_info}

            fas = defaultdict(set)

            def dfs(hierarchy, cur_id):
                all_childs = set()
                all_keyed_child = {}
                if 'Subcategory' in hierarchy:
                    for x in hierarchy['Subcategory']:
                        childs = dfs(x, freebase2id[x['LabelName']])
                        all_childs.update(childs)
                if cur_id != -1:
                    for c in all_childs:
                        fas[c].add(cur_id)
                all_childs.add(cur_id)
                return all_childs

            dfs(oid_hierarchy, -1)

            expanded_pred = []
            id_count = 0
            for d in self.lvis_dt.dataset['annotations']:
                cur_id = d['category_id']
                ids = [cur_id] + [x for x in fas[cur_id]]
                for cat_id in ids:
                    new_box = copy.deepcopy(d)
                    id_count = id_count + 1
                    new_box['id'] = id_count
                    new_box['category_id'] = cat_id
                    expanded_pred.append(new_box)

            print('Expanding original {} preds to {} preds'.format(
                len(self.lvis_dt.dataset['annotations']), len(expanded_pred)))
            self.lvis_dt.dataset['annotations'] = expanded_pred
            self.lvis_dt._create_index()

        # per-image per-category evaluation results
        self.eval_imgs = defaultdict(list)
        self.eval = {}  # accumulated evaluation results
        self._gts = defaultdict(list)  # gt for evaluation
        self._dts = defaultdict(list)  # dt for evaluation
        self.params = Params(iou_type=iou_type)  # parameters
        self.results = OrderedDict()
        self.ious = {}  # ious between all gts and dts

        self.params.img_ids = sorted(self.lvis_gt.get_img_ids())
        self.params.cat_ids = sorted(self.lvis_gt.get_cat_ids())
Example #6
0
class OIDEval:
    def __init__(
        self,
        lvis_gt,
        lvis_dt,
        iou_type="bbox",
        expand_pred_label=False,
        oid_hierarchy_path='./datasets/oid/annotations/challenge-2019-label500-hierarchy.json'
    ):
        """Constructor for OIDEval.
        Args:
            lvis_gt (LVIS class instance, or str containing path of annotation file)
            lvis_dt (LVISResult class instance, or str containing path of result file,
            or list of dict)
            iou_type (str): segm or bbox evaluation
        """
        self.logger = logging.getLogger(__name__)

        if iou_type not in ["bbox", "segm"]:
            raise ValueError("iou_type: {} is not supported.".format(iou_type))

        if isinstance(lvis_gt, LVIS):
            self.lvis_gt = lvis_gt
        elif isinstance(lvis_gt, str):
            self.lvis_gt = LVIS(lvis_gt)
        else:
            raise TypeError("Unsupported type {} of lvis_gt.".format(lvis_gt))

        if isinstance(lvis_dt, LVISResults):
            self.lvis_dt = lvis_dt
        elif isinstance(lvis_dt, (str, list)):
            self.lvis_dt = LVISResults(self.lvis_gt, lvis_dt, max_dets=-1)
        else:
            raise TypeError("Unsupported type {} of lvis_dt.".format(lvis_dt))

        if expand_pred_label:
            oid_hierarchy = json.load(open(oid_hierarchy_path, 'r'))
            cat_info = self.lvis_gt.dataset['categories']
            freebase2id = {x['freebase_id']: x['id'] for x in cat_info}
            id2freebase = {x['id']: x['freebase_id'] for x in cat_info}
            id2name = {x['id']: x['name'] for x in cat_info}

            fas = defaultdict(set)

            def dfs(hierarchy, cur_id):
                all_childs = set()
                all_keyed_child = {}
                if 'Subcategory' in hierarchy:
                    for x in hierarchy['Subcategory']:
                        childs = dfs(x, freebase2id[x['LabelName']])
                        all_childs.update(childs)
                if cur_id != -1:
                    for c in all_childs:
                        fas[c].add(cur_id)
                all_childs.add(cur_id)
                return all_childs

            dfs(oid_hierarchy, -1)

            expanded_pred = []
            id_count = 0
            for d in self.lvis_dt.dataset['annotations']:
                cur_id = d['category_id']
                ids = [cur_id] + [x for x in fas[cur_id]]
                for cat_id in ids:
                    new_box = copy.deepcopy(d)
                    id_count = id_count + 1
                    new_box['id'] = id_count
                    new_box['category_id'] = cat_id
                    expanded_pred.append(new_box)

            print('Expanding original {} preds to {} preds'.format(
                len(self.lvis_dt.dataset['annotations']), len(expanded_pred)))
            self.lvis_dt.dataset['annotations'] = expanded_pred
            self.lvis_dt._create_index()

        # per-image per-category evaluation results
        self.eval_imgs = defaultdict(list)
        self.eval = {}  # accumulated evaluation results
        self._gts = defaultdict(list)  # gt for evaluation
        self._dts = defaultdict(list)  # dt for evaluation
        self.params = Params(iou_type=iou_type)  # parameters
        self.results = OrderedDict()
        self.ious = {}  # ious between all gts and dts

        self.params.img_ids = sorted(self.lvis_gt.get_img_ids())
        self.params.cat_ids = sorted(self.lvis_gt.get_cat_ids())

    def _to_mask(self, anns, lvis):
        for ann in anns:
            rle = lvis.ann_to_rle(ann)
            ann["segmentation"] = rle

    def _prepare(self):
        """Prepare self._gts and self._dts for evaluation based on params."""

        cat_ids = self.params.cat_ids if self.params.cat_ids else None

        gts = self.lvis_gt.load_anns(
            self.lvis_gt.get_ann_ids(img_ids=self.params.img_ids,
                                     cat_ids=cat_ids))
        dts = self.lvis_dt.load_anns(
            self.lvis_dt.get_ann_ids(img_ids=self.params.img_ids,
                                     cat_ids=cat_ids))
        # convert ground truth to mask if iou_type == 'segm'
        if self.params.iou_type == "segm":
            self._to_mask(gts, self.lvis_gt)
            self._to_mask(dts, self.lvis_dt)

        for gt in gts:
            self._gts[gt["image_id"], gt["category_id"]].append(gt)

        # For federated dataset evaluation we will filter out all dt for an
        # image which belong to categories not present in gt and not present in
        # the negative list for an image. In other words detector is not penalized
        # for categories about which we don't have gt information about their
        # presence or absence in an image.
        img_data = self.lvis_gt.load_imgs(ids=self.params.img_ids)
        # per image map of categories not present in image
        img_nl = {d["id"]: d["neg_category_ids"] for d in img_data}
        # per image list of categories present in image
        img_pl = {d["id"]: d["pos_category_ids"] for d in img_data}
        # img_pl = defaultdict(set)
        for ann in gts:
            # img_pl[ann["image_id"]].add(ann["category_id"])
            assert ann["category_id"] in img_pl[ann["image_id"]]
        # print('check pos ids OK.')

        for dt in dts:
            img_id, cat_id = dt["image_id"], dt["category_id"]
            if cat_id not in img_nl[img_id] and cat_id not in img_pl[img_id]:
                continue
            self._dts[img_id, cat_id].append(dt)

    def evaluate(self):
        """
        Run per image evaluation on given images and store results
        (a list of dict) in self.eval_imgs.
        """
        self.logger.info("Running per image evaluation.")
        self.logger.info("Evaluate annotation type *{}*".format(
            self.params.iou_type))

        self.params.img_ids = list(np.unique(self.params.img_ids))

        if self.params.use_cats:
            cat_ids = self.params.cat_ids
        else:
            cat_ids = [-1]

        self._prepare()

        self.ious = {(img_id, cat_id): self.compute_iou(img_id, cat_id)
                     for img_id in self.params.img_ids for cat_id in cat_ids}

        # loop through images, area range, max detection number
        print('Evaluating ...')
        self.eval_imgs = [
            self.evaluate_img_google(img_id, cat_id, area_rng)
            for cat_id in cat_ids for area_rng in self.params.area_rng
            for img_id in self.params.img_ids
        ]

    def _get_gt_dt(self, img_id, cat_id):
        """Create gt, dt which are list of anns/dets. If use_cats is true
        only anns/dets corresponding to tuple (img_id, cat_id) will be
        used. Else, all anns/dets in image are used and cat_id is not used.
        """
        if self.params.use_cats:
            gt = self._gts[img_id, cat_id]
            dt = self._dts[img_id, cat_id]
        else:
            gt = [
                _ann for _cat_id in self.params.cat_ids
                for _ann in self._gts[img_id, cat_id]
            ]
            dt = [
                _ann for _cat_id in self.params.cat_ids
                for _ann in self._dts[img_id, cat_id]
            ]
        return gt, dt

    def compute_iou(self, img_id, cat_id):
        gt, dt = self._get_gt_dt(img_id, cat_id)

        if len(gt) == 0 and len(dt) == 0:
            return []

        # Sort detections in decreasing order of score.
        idx = np.argsort([-d["score"] for d in dt], kind="mergesort")
        dt = [dt[i] for i in idx]

        # iscrowd = [int(False)] * len(gt)
        iscrowd = [int('iscrowd' in g and g['iscrowd'] > 0) for g in gt]

        if self.params.iou_type == "segm":
            ann_type = "segmentation"
        elif self.params.iou_type == "bbox":
            ann_type = "bbox"
        else:
            raise ValueError("Unknown iou_type for iou computation.")
        gt = [g[ann_type] for g in gt]
        dt = [d[ann_type] for d in dt]

        # compute iou between each dt and gt region
        # will return array of shape len(dt), len(gt)
        ious = mask_utils.iou(dt, gt, iscrowd)
        return ious

    def evaluate_img_google(self, img_id, cat_id, area_rng):
        gt, dt = self._get_gt_dt(img_id, cat_id)
        if len(gt) == 0 and len(dt) == 0:
            return None

        if len(dt) == 0:
            return {
                "image_id": img_id,
                "category_id": cat_id,
                "area_rng": area_rng,
                "dt_ids": [],
                "dt_matches": np.array([], dtype=np.int32).reshape(1, -1),
                "dt_scores": [],
                "dt_ignore": np.array([], dtype=np.int32).reshape(1, -1),
                'num_gt': len(gt)
            }

        no_crowd_inds = [i for i, g in enumerate(gt) \
            if ('iscrowd' not in g) or g['iscrowd'] == 0]
        crowd_inds = [i for i, g in enumerate(gt) \
            if 'iscrowd' in g and g['iscrowd'] == 1]
        dt_idx = np.argsort([-d["score"] for d in dt], kind="mergesort")

        if len(self.ious[img_id, cat_id]) > 0:
            ious = self.ious[img_id, cat_id]
            iou = ious[:, no_crowd_inds]
            iou = iou[dt_idx]
            ioa = ious[:, crowd_inds]
            ioa = ioa[dt_idx]
        else:
            iou = np.zeros((len(dt_idx), 0))
            ioa = np.zeros((len(dt_idx), 0))
        scores = np.array([dt[i]['score'] for i in dt_idx])

        num_detected_boxes = len(dt)
        tp_fp_labels = np.zeros(num_detected_boxes, dtype=bool)
        is_matched_to_group_of = np.zeros(num_detected_boxes, dtype=bool)

        def compute_match_iou(iou):
            max_overlap_gt_ids = np.argmax(iou, axis=1)
            is_gt_detected = np.zeros(iou.shape[1], dtype=bool)
            for i in range(num_detected_boxes):
                gt_id = max_overlap_gt_ids[i]
                is_evaluatable = (not tp_fp_labels[i] and iou[i, gt_id] >= 0.5
                                  and not is_matched_to_group_of[i])
                if is_evaluatable:
                    if not is_gt_detected[gt_id]:
                        tp_fp_labels[i] = True
                        is_gt_detected[gt_id] = True

        def compute_match_ioa(ioa):
            scores_group_of = np.zeros(ioa.shape[1], dtype=float)
            tp_fp_labels_group_of = np.ones(ioa.shape[1], dtype=float)
            max_overlap_group_of_gt_ids = np.argmax(ioa, axis=1)
            for i in range(num_detected_boxes):
                gt_id = max_overlap_group_of_gt_ids[i]
                is_evaluatable = (not tp_fp_labels[i] and ioa[i, gt_id] >= 0.5
                                  and not is_matched_to_group_of[i])
                if is_evaluatable:
                    is_matched_to_group_of[i] = True
                    scores_group_of[gt_id] = max(scores_group_of[gt_id],
                                                 scores[i])
            selector = np.where((scores_group_of > 0)
                                & (tp_fp_labels_group_of > 0))
            scores_group_of = scores_group_of[selector]
            tp_fp_labels_group_of = tp_fp_labels_group_of[selector]

            return scores_group_of, tp_fp_labels_group_of

        if iou.shape[1] > 0:
            compute_match_iou(iou)

        scores_box_group_of = np.ndarray([0], dtype=float)
        tp_fp_labels_box_group_of = np.ndarray([0], dtype=float)

        if ioa.shape[1] > 0:
            scores_box_group_of, tp_fp_labels_box_group_of = compute_match_ioa(
                ioa)

        valid_entries = (~is_matched_to_group_of)

        scores = np.concatenate((scores[valid_entries], scores_box_group_of))
        tp_fps = np.concatenate((tp_fp_labels[valid_entries].astype(float),
                                 tp_fp_labels_box_group_of))

        return {
            "image_id":
            img_id,
            "category_id":
            cat_id,
            "area_rng":
            area_rng,
            "dt_matches":
            np.array([1 if x > 0 else 0 for x in tp_fps],
                     dtype=np.int32).reshape(1, -1),
            "dt_scores": [x for x in scores],
            "dt_ignore":
            np.array([0 for x in scores], dtype=np.int32).reshape(1, -1),
            'num_gt':
            len(gt)
        }

    def accumulate(self):
        """Accumulate per image evaluation results and store the result in
        self.eval.
        """
        self.logger.info("Accumulating evaluation results.")

        if not self.eval_imgs:
            self.logger.warn("Please run evaluate first.")

        if self.params.use_cats:
            cat_ids = self.params.cat_ids
        else:
            cat_ids = [-1]

        num_thrs = 1
        num_recalls = 1

        num_cats = len(cat_ids)
        num_area_rngs = 1
        num_imgs = len(self.params.img_ids)

        # -1 for absent categories
        precision = -np.ones((num_thrs, num_recalls, num_cats, num_area_rngs))
        recall = -np.ones((num_thrs, num_cats, num_area_rngs))

        # Initialize dt_pointers
        dt_pointers = {}
        for cat_idx in range(num_cats):
            dt_pointers[cat_idx] = {}
            for area_idx in range(num_area_rngs):
                dt_pointers[cat_idx][area_idx] = {}

        # Per category evaluation
        for cat_idx in range(num_cats):
            Nk = cat_idx * num_area_rngs * num_imgs
            for area_idx in range(num_area_rngs):
                Na = area_idx * num_imgs
                E = [
                    self.eval_imgs[Nk + Na + img_idx]
                    for img_idx in range(num_imgs)
                ]
                # Remove elements which are None
                E = [e for e in E if not e is None]
                if len(E) == 0:
                    continue

                dt_scores = np.concatenate([e["dt_scores"] for e in E], axis=0)
                dt_idx = np.argsort(-dt_scores, kind="mergesort")
                dt_scores = dt_scores[dt_idx]
                dt_m = np.concatenate([e["dt_matches"] for e in E],
                                      axis=1)[:, dt_idx]
                dt_ig = np.concatenate([e["dt_ignore"] for e in E],
                                       axis=1)[:, dt_idx]

                num_gt = sum([e['num_gt'] for e in E])
                if num_gt == 0:
                    continue

                tps = np.logical_and(dt_m, np.logical_not(dt_ig))
                fps = np.logical_and(np.logical_not(dt_m),
                                     np.logical_not(dt_ig))
                tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float)
                fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float)

                dt_pointers[cat_idx][area_idx] = {
                    "tps": tps,
                    "fps": fps,
                }

                for iou_thr_idx, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
                    tp = np.array(tp)
                    fp = np.array(fp)
                    num_tp = len(tp)
                    rc = tp / num_gt

                    if num_tp:
                        recall[iou_thr_idx, cat_idx, area_idx] = rc[-1]
                    else:
                        recall[iou_thr_idx, cat_idx, area_idx] = 0

                    # np.spacing(1) ~= eps
                    pr = tp / (fp + tp + np.spacing(1))
                    pr = pr.tolist()

                    for i in range(num_tp - 1, 0, -1):
                        if pr[i] > pr[i - 1]:
                            pr[i - 1] = pr[i]

                    mAP = compute_average_precision(
                        np.array(pr, np.float).reshape(-1),
                        np.array(rc, np.float).reshape(-1))
                    precision[iou_thr_idx, :, cat_idx, area_idx] = mAP

        self.eval = {
            "params": self.params,
            "counts": [num_thrs, num_recalls, num_cats, num_area_rngs],
            "date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            "precision": precision,
            "recall": recall,
            "dt_pointers": dt_pointers,
        }

    def _summarize(self, summary_type):
        s = self.eval["precision"]
        if len(s[s > -1]) == 0:
            mean_s = -1
        else:
            mean_s = np.mean(s[s > -1])
            # print(s.reshape(1, 1, -1, 1))
        return mean_s

    def summarize(self):
        """Compute and display summary metrics for evaluation results."""
        if not self.eval:
            raise RuntimeError("Please run accumulate() first.")

        max_dets = self.params.max_dets
        self.results["AP50"] = self._summarize('ap')

    def run(self):
        """Wrapper function which calculates the results."""
        self.evaluate()
        self.accumulate()
        self.summarize()

    def print_results(self):
        template = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} catIds={:>3s}] = {:0.3f}"

        for key, value in self.results.items():
            max_dets = self.params.max_dets
            if "AP" in key:
                title = "Average Precision"
                _type = "(AP)"
            else:
                title = "Average Recall"
                _type = "(AR)"

            if len(key) > 2 and key[2].isdigit():
                iou_thr = (float(key[2:]) / 100)
                iou = "{:0.2f}".format(iou_thr)
            else:
                iou = "{:0.2f}:{:0.2f}".format(self.params.iou_thrs[0],
                                               self.params.iou_thrs[-1])

            cat_group_name = "all"
            area_rng = "all"

            print(
                template.format(title, _type, iou, area_rng, max_dets,
                                cat_group_name, value))

    def get_results(self):
        if not self.results:
            self.logger.warn("results is empty. Call run().")
        return self.results