def __init__(self, args, max_seq_length, mode='x'): super().__init__() self.max_seq_length = max_seq_length from lxrt.modeling import LXRTFeatureExtraction as VisualBertForLXRFeature, VISUAL_CONFIG set_visual_config(args, VISUAL_CONFIG) # Using the bert tokenizer self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True) # Build LXRT Model self.model = VisualBertForLXRFeature.from_pretrained( "bert-base-uncased", mode=mode) if args.from_scratch: print("Re-initializing all the weights") self.model.apply(self.model.init_bert_weights) self.load_pretrain_head = args.get("load_pretrain_head", False) if self.load_pretrain_head: from lxmert.src.lxrt.modeling import BertPreTrainingHeads self.pretrained_head = BertPreTrainingHeads( self.model.config, self.model.bert.embeddings.word_embeddings.weight)
def __init__(self, args, mode='x'): super(LXRTEncoder, self).__init__() # self.max_seq_length = max_seq_length # self.max_label_text_length = max_label_text_length set_visual_config(args) # Build LXRT Model self.model = VisualBertForLXRFeature.from_pretrained("../user_data", mode=mode) if args.from_scratch: print("initializing all the weights") self.model.apply(self.model.init_bert_weights)
def __init__(self, args, max_seq_length, mode='x'): super().__init__() self.max_seq_length = max_seq_length set_visual_config(args) # Using the bert tokenizer self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True) # Build LXRT Model self.model = VisualBertForLXRFeature.from_pretrained( "bert-base-uncased", mode=mode) if args.from_scratch: print("initializing all the weights") self.model.apply(self.model.init_bert_weights)
def __init__(self, args, max_seq_length, mode='x', attention=False): super().__init__() print(f"Making {__name__}") self.max_seq_length = max_seq_length set_visual_config(args) # Using the bert tokenizer self.tokenizer = BertTokenizer.from_pretrained( "bert-base-uncased", do_lower_case=True ) print("Made Tokenizer") # Build LXRT Model self.model = VisualBertForLXRFeature.from_pretrained( "bert-base-uncased", mode=mode, attention=attention ) print("Made VisualBertForLXRFeature") if args.from_scratch: print("initializing all the weights") self.model.apply(self.model.init_bert_weights) print(f"Done {__name__}")