Example #1
0
    def build_model(self, inputs, outputs):
        outputs_spati = L.SpatialDropout1D(self.dropout_spatial)(outputs)

        conv_pools = []
        for filter in self.filters_size:
            x = L.Conv1D(
                filters=self.filters_num,
                kernel_size=filter,
                padding="valid",
                kernel_initializer="normal",
                activation="relu",
            )(outputs_spati)
            capsule = Capsule_bojone(num_capsule=self.num_capsule,
                                     dim_capsule=self.dim_capsule,
                                     routings=self.routings,
                                     kernel_size=(filter, 1),
                                     share_weights=True)(x)
            conv_pools.append(capsule)
        capsule = L.Concatenate(axis=-1)(conv_pools)
        x = L.Flatten()(capsule)
        x = L.Dropout(self.dropout)(x)
        # dense-mid
        x = L.Dense(units=min(max(self.label, 64), self.embed_size),
                    activation=self.activate_mid)(x)
        x = L.Dropout(self.dropout)(x)
        # dense-end, 最后一层, dense到label
        self.outputs = L.Dense(units=self.label,
                               activation=self.activate_end)(x)
        self.model = M.Model(inputs=inputs, outputs=self.outputs)
        self.model.summary(132)
Example #2
0
 def call(self, inputs):
     x_input_pad = L.ZeroPadding1D(
         (self.filter_size - 1, self.filter_size - 1))(inputs)
     conv_1d = L.Conv1D(
         filters=self.filter_num,
         kernel_size=self.filter_size,
         strides=1,
         padding="VALID",
         kernel_initializer="normal",  # )(x_input_pad)
         activation="tanh")(x_input_pad)
     return conv_1d
Example #3
0
 def build_model(self, inputs, outputs):
     # rnn type, RNN的类型
     if self.rnn_unit == "LSTM":
         layer_cell = L.LSTM
     elif self.rnn_unit == "CuDNNLSTM":
         layer_cell = L.CuDNNLSTM
     elif self.rnn_unit == "CuDNNGRU":
         layer_cell = L.CuDNNGRU
     else:
         layer_cell = L.GRU
     # embedding遮挡
     embedding_output_spatial = L.SpatialDropout1D(
         self.dropout_spatial)(outputs)
     # CNN
     convs = []
     for kernel_size in self.filters_size:
         conv = L.Conv1D(
             self.filters_num,
             kernel_size=kernel_size,
             strides=1,
             padding='SAME',
             kernel_regularizer=keras.regularizers.l2(self.l2),
             bias_regularizer=keras.regularizers.l2(self.l2),
         )(embedding_output_spatial)
         convs.append(conv)
     x = L.Concatenate(axis=1)(convs)
     # Bi-LSTM, 论文中使用的是LSTM
     x = L.Bidirectional(
         layer_cell(units=self.rnn_unit,
                    return_sequences=True,
                    activation='relu',
                    kernel_regularizer=keras.regularizers.l2(self.l2),
                    recurrent_regularizer=keras.regularizers.l2(
                        self.l2)))(x)
     x = L.Dropout(self.dropout)(x)
     x = L.Flatten()(x)
     # dense-mid
     x = L.Dense(units=min(max(self.label, 64), self.embed_size),
                 activation=self.activate_mid)(x)
     x = L.Dropout(self.dropout)(x)
     # dense-end, 最后一层, dense到label
     self.outputs = L.Dense(units=self.label,
                            activation=self.activate_end)(x)
     self.model = M.Model(inputs=inputs, outputs=self.outputs)
     self.model.summary(132)
Example #4
0
 def build_model(self, inputs, outputs):
     """
     build_model.
     Args:
         inputs: tensor, input of model
         outputs: tensor, output of model
     Returns:
         None
     """
     # LSTM or GRU
     if self.rnn_type == "LSTM":
         rnn_cell = L.LSTM
     elif self.rnn_type == "CuDNNLSTM":
         rnn_cell = L.CuDNNLSTM
     elif self.rnn_type == "CuDNNGRU":
         rnn_cell = L.CuDNNGRU
     else:
         rnn_cell = L.GRU
     # CNN-LSTM, 提取n-gram特征和最大池化, 一般不用平均池化
     conv_pools = []
     for i in range(len(self.filters_size)):
         conv = L.Conv1D(
             name="conv-{0}-{1}".format(i, self.filters_size[i]),
             kernel_size=self.filters_size[i],
             activation=self.activate_mid,
             filters=self.filters_num,
             padding='same',
         )(outputs)
         conv_rnn = L.Bidirectional(
             rnn_cell(
                 name="bi-lstm-{0}-{1}".format(i, self.filters_size[i]),
                 activation=self.activate_mid,
                 return_sequences=True,
                 units=self.rnn_unit,
             ))(conv)
         x_dropout = L.Dropout(rate=self.dropout,
                               name="dropout-{0}-{1}".format(
                                   i, self.filters_size[i]))(conv_rnn)
         conv_pools.append(x_dropout)
     # 拼接
     x = L.Concatenate(axis=-1)(conv_pools)
     x = L.Dropout(self.dropout)(x)
     # CRF or Dense
     if self.use_crf:
         x = L.Dense(units=self.label, activation=self.activate_end)(x)
         self.CRF = ConditionalRandomField(self.crf_lr_multiplier,
                                           name="crf_bert4keras")
         self.outputs = self.CRF(x)
         self.trans = K.eval(self.CRF.trans).tolist()
         self.loss = self.CRF.dense_loss if self.use_onehot else self.CRF.sparse_loss
         self.metrics = [
             self.CRF.dense_accuracy
             if self.use_onehot else self.CRF.sparse_accuracy
         ]
     else:
         self.outputs = L.TimeDistributed(
             L.Dense(units=self.label,
                     activation=self.activate_end,
                     name="dense-output"))(x)
     self.model = M.Model(inputs, self.outputs)
     self.model.summary(132)
Example #5
0
 def build_model(self, inputs, outputs):
     """
     build_model.
     Args:
         inputs: tensor, input of model
         outputs: tensor, output of model
     Returns:
         None
     """
     # CNN, 提取n-gram特征和最大池化, DGCNN膨胀卷积(IDCNN)
     conv_pools = []
     for i in range(len(self.filters_size)):
         conv = L.Conv1D(
             name="conv-{0}-{1}".format(i, self.filters_size[i]),
             dilation_rate=self.atrous_rates[0],
             kernel_size=self.filters_size[i],
             activation=self.activate_mid,
             filters=self.filters_num,
             padding="SAME",
         )(outputs)
         for j in range(len(self.atrous_rates) - 1):
             conv = L.Conv1D(
                 name="conv-{0}-{1}-{2}".format(i, self.filters_size[i], j),
                 dilation_rate=self.atrous_rates[j],
                 kernel_size=self.filters_size[i],
                 activation=self.activate_mid,
                 filters=self.filters_num,
                 padding="SAME",
             )(conv)
             conv = L.Dropout(
                 name="dropout-{0}-{1}-{2}".format(i, self.filters_size[i],
                                                   j),
                 rate=self.dropout,
             )(conv)
         conv_pools.append(conv)
     # 拼接
     x = L.Concatenate(axis=-1)(conv_pools)
     x = L.Dropout(self.dropout)(x)
     # CRF or Dense
     if self.use_crf:
         x = L.Dense(units=self.label, activation=self.activate_end)(x)
         self.CRF = ConditionalRandomField(self.crf_lr_multiplier,
                                           name="crf_bert4keras")
         self.outputs = self.CRF(x)
         self.trans = K.eval(self.CRF.trans).tolist()
         self.loss = self.CRF.dense_loss if self.use_onehot else self.CRF.sparse_loss
         self.metrics = [
             self.CRF.dense_accuracy
             if self.use_onehot else self.CRF.sparse_accuracy
         ]
     else:
         x = L.Bidirectional(
             L.GRU(
                 activation=self.activate_mid,
                 return_sequences=True,
                 units=self.rnn_unit,
                 name="bi-gru",
             ))(x)
         self.outputs = L.TimeDistributed(
             L.Dense(
                 activation=self.activate_end,
                 name="dense-output",
                 units=self.label,
             ))(x)
     self.model = M.Model(inputs, self.outputs)
     self.model.summary(132)